Skip to main content
Log in

On the Metal–Nonmetal Transition under Nanosecond Laser Ablation

  • LASER ABLATION
  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript

Abstract

Behavior of liquid mercury exposed to 25-ns laser pulses is investigated using acoustic and optical diagnostics. It is found that when pressure pulses generated in the target change, an additional peak appears as the laser intensity increases, which can be due to the motion of the metal–nonmetal transition front. This assumption agrees with a decrease in the reflected laser pulse and with the behavior of the pressure pulses in the case of free and loaded irradiated surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. V. A. Batanov, F. V. Bunkin, A. M. Prokhorov, and V. B. Fedorov, “Evaporation of metallic targets caused by intense optical radiation,” Sov. Phys.-JETP. 36 (2), 311–322 (1973).

    ADS  Google Scholar 

  2. F. V. Bunkin, “Comments on the paper of R. V. Karapetyan and A. A. Samokhin “Influence of an increase in the transparency of the intense evaporation of metals by optical radiation,” Sov. J. Quantum Electron. 4 (9), 1143 (1975). https://doi.org/10.1070/QE1975v004n09ABEH011558

    Article  ADS  Google Scholar 

  3. J. H. Yoo, S. H. Jeong, X. L. Mao, R. Greif, and R. E. Russo, “Evidence for phase-explosion and generationof large particles during high power nanosecond laser ablation of silicon,” Appl. Phys. Lett. 76 (6), 783–785 (2000). https://doi.org/10.1063/1.125894

    Article  ADS  Google Scholar 

  4. J. H. Yoo, S. H. Jeong, R. Greif, and R. E. Russo, “Explosive change in crater properties during high power nanosecond laser ablation of silicon,” Appl. Phys. 88 (3), 1638–1649 (2000). https://doi.org/10.1063/1.373865

    Article  Google Scholar 

  5. J. H. Yoo, S. H. Jeong, R. Greif, X. L. Mao, and R. E. Russo, “Response to ‘Comment on ‘Evidence for phase explosion and generation of large particles during high power nanosecond laser ablation of silicon’ [Appl. Phys. Lett. 79, 442 (2001)],” Appl. Phys. Lett. 79 (3), 444–448 (2001). https://doi.org/10.1063/1.1386623

    Article  ADS  Google Scholar 

  6. Q. Lu, S. Mao, X. Mao, and R. Russo, “Delayed phase explosion during high-power nanosecond laser ablation of silicon,” Appl. Phys. Lett. 80 (17), 3072–3074 (2002). https://doi.org/10.1063/1.1473862

    Article  ADS  Google Scholar 

  7. S. N. Andreev, V. I. Mazhukin, N. M. Nikiforova, and A. A. Samokhin, “On possible manifestations of the induced transparency during laser evaporation of metals,” Quantum Electron. 33 (9), 771–776 (2003). https://doi.org/10.1070/QE2003v033n09ABEH002499

    Article  ADS  Google Scholar 

  8. S. I. Kudryashov, S. Paul, K. Lyon, and S. D. Allen, “Dynamics of laser-induced surface phase explosion in silicon,” Appl. Phys. Lett. 98 (25), 254102 (2011). https://doi.org/10.1063/1.3595328

    Article  ADS  Google Scholar 

  9. N. E. Bykovsky, S. M. Pershin, A. A. Samokhin, and Yu. V. Senatsky, “Transmittance jump in a thin aluminium layer during laser ablation,” Quantum Electron. 46 (2), 128–132 (2016). https://doi.org/10.1070/QEL15971

    Article  ADS  Google Scholar 

  10. A. A. Samokhin, E. V. Shashkov, N. S. Vorobiev, and A. E. Zubko, “On acoustical registration of irradiated surface displacement during nanosecond laser-metal interaction and metal–nonmetal transition effect,” Appl. Surf. Sci. 502, 144261 (2020). https://doi.org/10.1016/j.apsusc.2019.144261

    Article  Google Scholar 

  11. I. A. Veselovskii, B. M. Zhiryakov, N. I. Popov, and A. A. Samokhin, “The photoacoustic effect and phase transitions in semiconductors and metals irradiated by laser pulses,” in Proceedings of the General Physics Institute, Vol. 13: Effect of Laser Radiation on Absorbing Condensed Media (Nova Science, New York, 1990), pp. 179–198.

  12. A. A. Samokhin, E. V. Shashkov, N. S. Vorobiev, and A. E. Zubko, “Nanosecond calibration of a piezo transducer by comparing thermoacoustic and vaporization pressure signals at pulsed laser irradiation of a metal target,” Phys. Wave Phenom. 27 (4), 268–270 (2019). https://doi.org/10.3103/S1541308X19040046

    Article  ADS  Google Scholar 

  13. A. A. Samokhin, V. I. Mazhukin, M. M. Demin, A. V. Shapranov, and A. E. Zubko, “Molecular dynamics modeling of nanosecond laser ablation: Transcritical regime,” Math. Montisn. 38, 78–88 (2017).

    MATH  Google Scholar 

  14. J. F. Ready, “Development of plume of material vaporized by giant-pulse laser,” Appl. Phys. Lett. 3 (1), 11–13 (1963). https://doi.org/10.1063/1.1723555

    Article  ADS  Google Scholar 

  15. F. W. Dabby and U. C. Paek, “High-intensity laser-induced vaporization and explosion of solid material,” IEEE J. Quantum Electron. 8 (2), 106–111 (1972). https://doi.org/10.1109/JQE.1972.1076937

    Article  ADS  Google Scholar 

  16. V. Craciun, “Comment on “Evidence for phase-explosion and generation of large particles during high power nanosecond laser ablation of silicon” [Appl. Phys. Lett. 76, 783 (2000)],” Appl. Phys. Lett. 79 (3), 442–443 (2001). https://doi.org/10.1063/1.1386622

    Article  ADS  Google Scholar 

  17. C. Porneala and D. A. Willis, “Time-resolved dynamics of nanosecond laser-induced phase explosion,” J. Phys. D: Appl. Phys. 42 (15), 155503 (2009). https://doi.org/10.1088/0022-3727/42/15/155503

    Article  ADS  Google Scholar 

  18. A. V. Pakhomov, M. S. Thompson, and D. A. Gregory, “Laser-induced phase explosions in lead, tin and other elements: Microsecond regime and UV-emission,” J. Phys. D: Appl. Phys. 36 (17), 2067–2075 (2003). https://doi.org/10.1088/0022-3727/36/17/308

    Article  ADS  Google Scholar 

  19. L. D. Landau and Ya. B. Zeldovich, “On the relation between the liquid and the gaseous states of metals,” Acta Phys.-Chim. USSR. 18, 194–197 (1943).

    Google Scholar 

  20. I. Iosilevskiy and V. Gryaznov, “Uranium critical point problem,” J. Nucl. Mater. 344 (1–3), 30–35 (2005). https://doi.org/10.1016/j.jnucmat.2005.04.011

  21. I. Iosilevskiy and V. Gryaznov, “Uranium critical point location problem,” in Abstr. Int. Conf. “Zababakhin Scientific Talks”, Snezhinsk, Russia, March 18–22, 2019 (VNIIFTRI, Snezhinsk, 2019), p. 95. ftp://ancient.hydro. nsc.ru/public/home_page/srexpl/biblio/2019/ZST_Theses.pdf

  22. V. S. Vorob’ev and E. M. Apfelbaum, “The generalized scaling laws based on some deductions from the van der Waals equation,” High Temp. 54 (2), 175–185 (2016). https://doi.org/10.1134/S0018151X16020243

    Article  Google Scholar 

  23. A. L. Khomkin and A. S. Shumikhin, “Critical points of metal vapors,” J. Exp. Theor. Phys. 121 (3), 521–528 (2015). https://doi.org/10.1134/S1063776115090162

    Article  ADS  Google Scholar 

  24. Ch. Wu and L. V. Zhigilei, “Microscopic mechanisms of laser spallation and ablation of metal targets from large-scale molecular dynamics simulations,” Appl. Phys. A. 114 (1), 11–32 (2014). https://doi.org/10.1007/s00339-013-8086-4

    Article  ADS  Google Scholar 

  25. I. K. Kikoin and A. P. Senchenkov, “Electrical conduction and the equation of state of mercury in the temperature range 0–2000°C and pressure region 200–5000 atmospheres,” Fiz. Met. Metalloved. 24 (5), 843–858 (1967) [in Russian].

    Google Scholar 

  26. V. A. Alekseev, A. A. Andreev, and V. Ya. Prokhorenko, “Electric properties of liquid metals and semiconductors,” Sov. Phys.-Usp. 15 (2), 139–158 (1972). https://doi.org/10.1070/PU1972v015n02ABEH004959

    Article  ADS  Google Scholar 

  27. I. K. Kikoin, A. P. Senchenkov, S. P. Naurzakov, and E. B. Gelman, Preprint IAE-2310 (Kurchatov Inst. At. Energy, Moscow, 1973) [in Russian].

    Google Scholar 

  28. U. Even and J. Jortner, “Electronic transport in expanded liquid mercury,” Phys. Rev. B. 8 (6), 2536–2545 (1973). https://doi.org/10.1103/PhysRevB.8.2536

    Article  ADS  Google Scholar 

  29. G. Kresse and J. Hafner, “Ab initio simulation of the metal/nonmetal transition in expanded fluid mercury,” Phys. Rev. B. 55 (12), 7539–7545 (1997). https://doi.org/10.1103/PhysRevB.55.7539

    Article  ADS  Google Scholar 

  30. A. I. Kiselev, “On splitting the conduction band of liquid mercury,” Opt. Spectrosc. 125 (2), 205–207 (2018). https://doi.org/10.1134/S0030400X1808012X

    Article  ADS  Google Scholar 

  31. F. Hensel and E. U. Franck, “Metal–nonmetal transition in dense mercury vapor,” Rev. Mod. Phys. 40 (4), 697–703 (1968). https://doi.org/10.1103/RevModPhys.40.697

    Article  ADS  Google Scholar 

  32. F. Keilmann, “Laser-driven corrugation instability of liquid metal surfaces,” Phys. Rev. Lett. 51 (23), 2097–2100 (1983). https://doi.org/10.1103/PhysRevLett.51.2097

    Article  ADS  Google Scholar 

  33. J. B. Walter, K. L. Telschow, anf R. J. Conant, Review of Progress in Quantitative Nondestructive Evaluation, Eds. by D. O. Thompson and D. E. Chimenti (Plenum, New York, 1995). Vol. 14.

  34. S. E. Garwick, “A mathematical model of laser ablation applied to ultrasonics in liquid mercury,” M.S. Thesis in Mechanical Engineering (Montana State University, 1996).

  35. T. D. Bennett and M. Farrelly, “Vaporization kinetics during pulsed laser heating of liquid Hg,” J. Heat Transfer. 122 (2), 345–350 (1999). https://doi.org/10.1115/1.521470

    Article  Google Scholar 

  36. A. A. Karabutov, A. P. Kubyshkin, V. Ya. Panchenko, and N. B. Podymova, “Dynamic shift boiling point of a metal under the influence of laser radiation,” Quantum Electron. 25 (8), 789–793 (1995). https://doi.org/10.1070/QE1995v025n08ABEH000469

    Article  ADS  Google Scholar 

  37. F. V. Potemkin and E. I. Mareev, “Dynamics of multiple bubbles, excited by a femtosecond filament in water,” Laser Phys. Lett. 12 (1), 015405 (2015). https://doi.org/10.1088/1612-2011/12/1/015405

    Article  ADS  Google Scholar 

  38. A. V. Pushkin, A. S. Bychkov, A. A. Karabutov, and F. V. Potemkin, “Cavitation and shock waves emission on the rigid boundary of water under mid-IR nanosecond laser pulse excitation,” Laser Phys. Lett. 15 (6), 065401 (2918). https://doi.org/10.1088/1612-202X/aaba4e

  39. J. Mazumder, “Overview of melt dynamics in laser processing,” Opt. Eng. 30 (8), 1208–1219 (1991). https://doi.org/10.1117/12.55899

    Article  ADS  Google Scholar 

  40. S. Basu and T. DebRoy, “Liquid metal expulsion during laser irradiation,” J. Appl. Phys. 72 (8), 3317–3322 (1992). https://doi.org/10.1063/1.351452

    Article  ADS  Google Scholar 

  41. C. Körner, R. Mayerhofer, M. Hartmann, and H. W. Bergmann, “Physical and material aspects in using visible laser pulses of nanosecond duration for ablation,” Appl. Phys. A. 63 (2), 123–131 (1996). https://doi.org/10.1007/BF01567639

    Article  ADS  Google Scholar 

  42. S. I. Dolgaev, A. V. Simakin, and G. A. Shafeev, “Transmission of laser radiation by absorbing liquids,” Quantum Electron. 32 (5), 443–446 (2002). https://doi.org/10.1070/QE2002v032n05ABEH002215

    Article  ADS  Google Scholar 

  43. S. I. Dolgaev, A. V. Simakin, and G. A. Shafeev, “Laser beam propagation in opaque liquids,” Phys. Vib. 10 (1), 43–50 (2002).

    Google Scholar 

  44. V. I. Vovchenko, S. M. Klimentov, P. A. Pivovarov, and A. A. Samokhin, “Effect of submillisecond radiation of the erbium laser on absorbing liquid,” Bull. Lebedev Phys. Inst. 34 (11), 325–328 (2007). https://doi.org/10.3103/S1068335607110048

    Article  ADS  Google Scholar 

Download references

Funding

The research was partly supported by the Russian Foundation for Basic Research (RFBR project No 20-02-00683).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Pivovarov.

Additional information

Translated by M. Potapov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samokhin, A.A., Pivovarov, P.A., Shashkov, E.V. et al. On the Metal–Nonmetal Transition under Nanosecond Laser Ablation. Phys. Wave Phen. 29, 204–209 (2021). https://doi.org/10.3103/S1541308X21030110

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1541308X21030110

Keywords:

Navigation