Skip to main content
Log in

Investigation of Coupling Efficiency of Slow-Wave Propagation Mode along Cochlea

  • Wave Phenomena in Biological Tissues
  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript

Abstract

The coupling efficiency of the slow-wave propagation mode along the cochlea was investigated by evaluating the overlap integral of the acoustic field on two adjacent cross-sectional planes. The dispersion diagrams of the fast- and slow-wave modes and the structural dependence of the angular wavenumber and coupling efficiency of the slow-wave mode were studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Lighthill, “Energy Flow in the Cochlea,” J. Fluid Mech. 106, 149 (1981).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. M. Andoh and H. Wada, “Prediction of the Characteristics of Two Types of Pressure Waves in the Cochlea: Theoretical Considerations,” J. Acoust. Soc. Am. 116, 417 (2004).

    Article  ADS  Google Scholar 

  3. A.A. Parthasarathi, K. Grosh, and A.L. Nuttall, “Three-Dimensional Numerical Modeling for Global Cochlear Dynamics,” J. Acoust. Soc. Am. 107, 474 (2000).

    Article  ADS  Google Scholar 

  4. S.T. Neely, “Finite Difference Solution of a Two-Dimensional Mathematical Model of the Cochlea,” J. Acoust. Soc. Am. 69, 1386 (1981).

    Article  ADS  Google Scholar 

  5. W.X. Chan and Y.J. Yoon, “Effects of Basilar Membrane Arch and Radial Tension on the Travelling Wave in Gerbil Cochlea,” Hear. Res. 327, 136 (2015).

    Article  Google Scholar 

  6. H. Cai, B. Shoelson, and R. Chadwick, “Evidence of Tectorial Membrane Radial Motion in a Propagating Mode of a Complex Cochlear Model,” Proc. Natl. Acad. Sci. USA. 101(16), 6243 (2004).

    Article  ADS  Google Scholar 

  7. H. Cai and R. Chadwick, “Radial Structure of Traveling Waves in the Inner Ear,” J. Appl. Math. 63(4), 1105 (2003).

    MathSciNet  MATH  Google Scholar 

  8. S.J. Elliott, G. Ni, B.R. Mace, and B. Lineton, “A Wave Finite Element Analysis of the Passive Cochlea,” J. Acoust. Soc. Am. 133, 1535 (2013).

    Article  ADS  Google Scholar 

  9. G. Ni and S.J. Elliot, “Comparing Methods of Modeling Near Field Fluid Coupling in the Cochlea,” J. Acoust. Soc. Am. 137, 1309 (2015).

    Article  ADS  Google Scholar 

  10. S.J. Elliot, B. Lineton, and G. Ni, “Fluid Coupling in a Discrete Model of Cochlear Mechanics,” J. Acoust. Soc. Am. 130, 1441 (2011).

    Article  ADS  Google Scholar 

  11. K.M. Lim and C.R. Steele, “A Three-Dimensional Nonlinear Active Cochlear Model Analyzed by the WKB-Numeric Method,” Hear. Res. 170, 190 (2002).

    Article  Google Scholar 

  12. E. Fuhrmann, W. Schneider, and M. Schultz, “Wave Propagation in the Cochlea (Inner Ear): Effects of Reissner’s Membrane and Non-Rectangular Cross-Section,” Acta Mech. 70, 15 (1987).

    Article  MATH  Google Scholar 

  13. C.R. Steele and L.A. Taber, “Comparison of WKB Calculations and Experimental Results for Three-Dimensional Cochlear Models,” J. Acoust. Soc. Am. 65, 1007 (1979).

    Article  ADS  MATH  Google Scholar 

  14. C.R. Steele and L.A. Taber, “Comparison of WKB and Finite Difference Calculations for a Two-Dimensional Cochlear Model,” J. Acoust. Soc. Am. 65, 1001 (1979).

    Article  ADS  MATH  Google Scholar 

  15. R.Z. Gan, B.P. Reeves, and X. Wang, “Modeling of Sound Transmission from Ear Canal to Cochlea,” Ann. Biomed. Eng. 35, 2180 (2007).

    Article  Google Scholar 

  16. W. Yao, Y. Chen, J. Ma, C. Gan, and D. Wang, “Numerical Simulation on the Dynamic Behavior of the Basilar Membrane in the Spiral Cochlea,” Biomed. Res. 27(3), 977 (2016).

    Google Scholar 

  17. G. Ni, S.J. Elliott, and J. Baumgart, “Finite-Element Model of the Active Organ of Corti,” J. R. Soc. Interface. 13, 20150913 (2016).

    Article  Google Scholar 

  18. F. Böhnke and W. Arnold, “3D-Finite Element Model of the Human Cochlea Including Fluid-Structure Couplings,” ORL. 61(5), 305 (1999).

    Article  Google Scholar 

  19. T. Koike, C. Sakamoto, T. Sakashita, K. Hayashi, S. Kanzaki, and K. Ogawa, “Effects of a Perilymphatic Fistula on the Passive Vibration Response of the Basilar Membrane,” Hear. Res. 283, 117 (2012).

    Article  Google Scholar 

  20. A. De Paolis, M. Bikson, J.T. Nelson, J.A. de Ru, M. Packer, and L. Cardoso, “Analytical and Numerical Modeling of the Hearing System: Advances Towards the Assessment of Hearing Damage,” Hear. Res. 349, 111 (2017).

    Article  Google Scholar 

Download references

Funding

This research was financially supported by Kansai University Outlay Support for Establishing Research Centers “Study on auditory mechanism of human hearing systems” (2018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Kitamura.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kitamura, T. Investigation of Coupling Efficiency of Slow-Wave Propagation Mode along Cochlea. Phys. Wave Phen. 27, 242–245 (2019). https://doi.org/10.3103/S1541308X19030129

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1541308X19030129

Navigation