Skip to main content
Log in

MXene/La3+ Doped ZnO/Hb Nanocomposite Modified Glassy Carbon Electrode as Novel Voltammetric Sensor for Determination of Hydrogen Peroxide

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The purpose of the present study was to introduce a new voltammetric sensor of MXene/La3+-doped ZnO/hemoglobin (Hb) nanocomposite-modified glassy carbon electrode (MXene/La3+-doped ZnO/Hb/GCE) with a potential electro-conductivity and catalytic activity to detect the presence of hydrogen peroxide (H2O2). To this end, the method of cyclic voltammetry was used to analyze the electrochemical behavior of H2O2. The cathodic potential scanning showed the reduction peak at the potential of –0.2 V. The results revealed higher cathodic peak currents (Ipc) for the MXene/La3+-doped ZnO/Hb/GCE sensor when compared with a GCE alone. Moreover, using a differential pulse voltammetry, the range of linear concentration was obtained to be between 2.0 × 10–7 and 4.0 × 10–4 M, presenting the detection limit of 8.0 × 10–8 M. Additionally, acceptable recoveries were observed for the proposed approach in water samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Jing, Z., Yan, Y., Li, Z., X, Li., et al., An amperometric biosensor for the detection of hydrogen peroxide released from human breast cancer cells, Biosens. Bioelectron., 2013, vol. 41, p. 815.

    Article  Google Scholar 

  2. Maji, S.K., Sreejith, S., Mandal, A.K., Ma, X., et al., Immobilizing gold nanoparticles in mesoporous silica covered reduced graphene oxide: A hybrid material for cancer cell detection through hydrogen peroxide sensing, ACS Appl. Mater. Interfaces, 2014, vol. 6, p. 13648.

    Article  Google Scholar 

  3. Xi, J., Xie, C., Yan, Z., Lu, W., et al., Pd nanoparticles decorated n-doped graphene quantum dotsn-doped carbon hollow nanospheres with high electrochemical sensing performance in cancer detection, ACS Appl. Mater. Interfaces, 2016, vol. 8, p. 22563.

    Article  Google Scholar 

  4. Ciriminna, R., Albanese, L., Meneguzzo, F., and Pagliaro, M., Hydrogen peroxide: A key chemical for today’s sustainable development, ChemSusChem, 2016, vol. 9, p. 3374.

    Article  Google Scholar 

  5. Pennemann, H. and Kolb, G., Microstructured reactors as efficient tool for the operation of selective oxidation reactions, Catal. Today, 2016, vol. 278, p. 3.

    Article  Google Scholar 

  6. Vishnu, N. and Kumar, A.S., Intrinsic iron-containing multiwalled carbon nanotubes as electro-Fenton catalyst for the conversion of benzene to redox-active surface-confined quinones, Chem. Electroanal. Chem., 2016, vol. 3, p. 986.

    Google Scholar 

  7. Amreen, K. and Kumar, A.S., A human whole blood chemically modified electrode for the hydrogen peroxide reduction and sensing: Real-time interaction studies of hemoglobin in the red blood cell with hydrogen peroxide, Electroanal. Chem., 2018, vol. 815, p. 189.

    Article  Google Scholar 

  8. Nasir, M., Rauf, S., Muhammad, N., Nawaz, et al., Biomimetic nitrogen doped titania nanoparticles as a colorimetric platform for hydrogen peroxide detection, Colloid Interface Sci., 2017, vol. 505, p. 1147.

    Google Scholar 

  9. Qi, Z., Wang, L., You, Q., and Chen, Y., PA-Tb-Cu MOF as luminescent nanoenzyme for catalytic assay of hydrogen peroxide, Biosens. Bioelectron., 2017, vol. 96, p. 227.

    Article  Google Scholar 

  10. Bhatia, P., Yadav, P., and Gupta, B.D., Surface plasmon resonance based fiber optic hydrogen peroxide sensor using polymer embedded nanoparticles, Sens. Actuators, B, 2013, vol. 182, p. 330.

    Article  Google Scholar 

  11. Kafi, A.K.M., Wali, Q., Jose, R., Biswas, T.K., et al., A glassy carbon electrode modified with SnO2 nanofibers, polyaniline and hemoglobin for improved amperometric sensing of hydrogen peroxide, Microchim. Acta, 2017, vol. 184, p. 4443.

    Article  Google Scholar 

  12. Tajik, S., Mahmoudi-Moghaddam, H., and Beito-llahi, H., Screen-printed electrode modified with La3+-doped Co3O4 nanocubes for electrochemical determination of hydroxylamine, J. Electrochem. Soc., 2019, vol. 166, p. B402.

    Article  Google Scholar 

  13. Karimi-Maleh, H., Karimi, F., Alizadeh, M., and Sanati, A.L., Electrochemical sensors, a bright future in the fabrication of portable kits in analytical systems, Chem. Rec., 2020, vol. 20, p. 682.

    Article  Google Scholar 

  14. Mahanthesha, K.R. and Swamy, B.K., Selective determination of norepinephrine at SAOS/MWCNT/MCPE: A voltammetric study, Anal. Bioanal. Electrochem., 2018, vol. 10, p. 321.

    Google Scholar 

  15. Karimi-Maleh, H., Karimi, F., Orooji, Y., Mansouri, G., et al., A new nickel-based co-crystal complex electrocatalyst amplified by NiO dope Pt nanostructure hybrid; a highly sensitive approach for determination of cysteamine in the presence of serotonin, Sci. Rep., 2020, vol. 10, p. 11699.

    Article  Google Scholar 

  16. Xu, G., Huo, D., Hou, C., Zhao, Y., et al., A regenerative and selective electrochemical aptasensor based on copper oxide nanoflowers-single walled carbon nanotubes nanocomposite for chlorpyrifos detection, Talanta, 2018, vol. 178, p. 1046.

    Article  Google Scholar 

  17. Mahmoudi-Moghaddam, H., Tajik, S., and Beitollahi, H., A new electrochemical DNA biosensor based on modified carbon paste electrode using graphene quantum dots and ionic liquid for determination of topotecan, Microchem. J., 2019, vol. 150, p. 104085.

    Article  Google Scholar 

  18. Sabour, B., One-step electrochemical preparation of oleic acid capped superparamagnetic iron oxide nanoparticles in ethanol medium and its characterization, Anal. Bioanal. Electrochem., 2018, vol. 10, p. 310.

    Google Scholar 

  19. Karimi-Maleh, H., Karimi, F., Malekmohammadi, S., Zakariae, N., et al., An amplified voltammetric sensor based on platinum nanoparticle/polyoxometalate/two-dimensional hexagonal boron nitride nanosheets composite and ionic liquid for determination of N-hydroxysuccinimide in water samples, J. Mol. Liq., 2020, vol. 310, p. 113185.

    Article  Google Scholar 

  20. Tajik, S., Beitollahi, H., Garkani-Nejad, F., Kirlikovali, K.O., et al., Recent electrochemical applications of metal-organic framework-based materials, Cryst. Growth Des., 2020, vol. 20, p. 7034.

    Article  Google Scholar 

  21. Tahernejade, R. and Sheikhshoaie, I., Kojic acid analysis in foodstuff using a reduced graphene oxide/NiO nanocomposite modified electrode, Anal. Bioanal. Electrochem., 2017, vol. 9, p. 784.

    Google Scholar 

  22. Beitollahi, H., Safaei, M., and Tajik, S., Different electrochemical sensors for determination of dopamine as neurotransmitter in mixed and clinical samples: A review, Anal. Bioanal. Chem. Res., 2019, vol. 6, p. 81.

    Google Scholar 

  23. Karimi-Maleh, H., Cellat, K., Arıkan, K., Savk, A., et al., Palladium–nickel nanoparticles decorated on functionalized-MWCNT for high precision non-enzymatic glucose sensing, Mater. Chem. Phys., 2020, vol. 250, p. 123042.

    Article  Google Scholar 

  24. Suraniti, E., Abintou, M., Durand, F., and Mano, N., Heat and drying time modulate the O2 reduction current of modified glassy carbon electrodes with bilirubin oxidases, Bioelectrochemistry, 2012, vol. 88, p. 65.

    Article  Google Scholar 

  25. Miraki, M., Karimi-Maleh, H., Taher, M.A., Cheraghi, S., et al., Voltammetric amplified platform based on ionic liquid/NiO nanocomposite for determination of benserazide and levodopa, J. Mol. Liq., 2019, vol. 278, p. 672.

    Article  Google Scholar 

  26. Beitollahi, H., Tajik, S., Garkani-Nejad, F., and Safaei, M., Recent advances in ZnO nanostruture based electrochemical sensors and biosensors, J. Mater. Chem. B, 2020, vol. 8, p. 5826.

    Article  Google Scholar 

  27. Shetti, N.P., Nayak, D.S., Malode, S.J., and Kulkarni, R.M., An electrochemical sensor for clozapine at ruthenium doped TiO2 nanoparticles modified electrode, Sens. Actuators, B, 2017, vol. 247, p. 858.

    Article  Google Scholar 

  28. Karimi-Maleh, H., Sheikhshoaie, M., Sheikhshoaie, I., Ranjbar, M., et al., A novel electrochemical epinine sensor using amplified CuO nanoparticles and an-hexyl-3-methylimidazolium hexafluorophosphate electrode, New J. Chem., 2019, vol. 43, p. 2362.

    Article  Google Scholar 

  29. Tahernejad-Javazmi, F., Shabani-Nooshabadi, M., and Karimi-Maleh, H., Analysis of glutathione in the presence of acetaminophen and tyrosine via an amplified electrode with MgO/SWCNTs as a sensor in the hemolyzed erythrocyte, Talanta, 2018, vol. 176, p. 208.

    Article  Google Scholar 

  30. Bao, J., Qi, Y., Huo, D., Hou, J., et al., A sensitive and selective non-enzymatic glucose sensor based on AuNPs/CuO NWs-MoS2 modified electrode, J. Electrochem. Soc., 2019, vol. 166, p. B1179.

    Article  Google Scholar 

  31. Alavi-Tabari, S.A.R., Khalilzadeh, M.A., and Karimi-Maleh, H., Simultaneous determination of doxorubicin and dasatinib as two breast anticancer drugs uses an amplified sensor with ionic liquid and ZnO nanoparticle, J. Electroanal. Chem., 2018, vol. 811, p. 84.

    Article  Google Scholar 

  32. Beitollahi, H., Mahmoudi-Moghaddam, H., and Tajik, S., Voltammetric determination of bisphenol a in water and juice using a lanthanum(III)-doped cobalt(II, III) nanocube modified carbon screen-printed electrode, Anal. Lett., 2019, vol. 52, p. 1432.

    Article  Google Scholar 

  33. Zhu, Y., Pan, D., Hu, X., Han, H., et al., An electrochemical sensor based on reduced graphene oxide/gold nano-particles modified electrode for determination of iron in coastal waters, Sens. Actuators, B, 2017, vol. 243, p. 1.

    Article  Google Scholar 

  34. Baghizadeh, A., Karimi-Maleh, H., Khoshnama, Z., Hassankhani, A., et al., A Voltammetric sensor for simultaneous determination of vitamin c and vitamin B6 in food samples using ZrO2 nanoparticle/ionic liquids carbon paste electrode, Food Anal. Methods, 2015, vol. 8, p. 549.

    Article  Google Scholar 

  35. Ren, Q., Shen, X., Sun, Y., Fan, R., et al., A highly sensitive competitive immunosensor based on branched polyethyleneimine functionalized reduced graphene oxide and gold nanoparticles modified electrode for detection of melamine, Food Chem., 2020, vol. 304, p. 125397.

    Article  Google Scholar 

  36. Zhang, C.J., Pinilla, S., McEvoy, N., Cullen, et al., Oxidation stability of colloidal two-dimensional titanium carbides (MXenes), Chem. Mater., 2017, vol. 29, p. 4848.

    Article  Google Scholar 

  37. Zhang, C., Beidaghi, M., Naguib, M., Lukatskaya, M.R., et al., Synthesis and charge storage properties of hierarchical niobium pentoxide/carbon/niobium carbide (MXene) hybrid materials, Chem. Mater., 2016, vol. 28, p. 3937.

    Article  Google Scholar 

  38. Li, H., Hou, Y., Wang, F., Lohe, M.R., et al., Flexible all-solid-state supercapacitors with high volumetric capacitances boosted by solution processable MXene and electrochemically exfoliated graphene, Adv. Energy Mater., 2017, vol. 7, p. 1601847.

    Article  Google Scholar 

  39. Wang, H., Wu, Y., Yuan, X., Zeng, G., et al., Clay-inspired MXene-based electrochemical devices and photo-electrocatalyst: State-of-the-art progresses and challenges, Adv. Mater., 2018, vol. 30, p. 1704561.

    Article  Google Scholar 

  40. Yukird, J., Kongsittikul, P., Qin, J., Chailapakul, O., et al., Zn@graphene nanocomposite modified electrode for sensitive and simultaneous detection of Cd(II) and Pb (II), Synth. Met., 2018, vol. 245, p. 251.

    Article  Google Scholar 

  41. Ahmad, R., Tripathy, N., Jang, N.K., Khang, G., et al., Fabrication of highly sensitive uric acid biosensor based on directly grown ZnO nanosheets on electrode surface, Sens. Actuators, B, 2015, vol. 206, p. 146.

    Article  Google Scholar 

  42. Ridhuan, N.S., Razak, K.A., and Lockman, Z., Fabrication and characterization of glucose biosensors by using hydrothermally grown ZnO nanorods, Sci. Rep., 2018, vol. 8, p. 13722.

    Article  Google Scholar 

  43. Guo, W., Li, X., Qin, H., and Wang, Z., PEG-20000 assisted hydrothermal synthesis of hierarchical ZnO flowers: structure, growth and gas sensor properties, Phys. E (Amsterdam), 2015, vol. 73, p. 163.

    Article  Google Scholar 

  44. Bijad, M., Karimi-Maleh, H., and Khalilzadeh, M.A., Application of ZnO/CNTs nanocomposite ionic liquid paste electrode as a sensitive voltammetric sensor for determination of ascorbic acid in food samples, Food Anal. Methods, 2013, vol. 6, p. 1639.

    Article  Google Scholar 

  45. Chen, W., Weng, W., Niu, X., Li, X., et al., Boron-doped graphene quantum dots modified electrode for electrochemistry and electrocatalysis of hemoglobin, J. Electroanal. Chem., 2018, vol. 823, p. 137.

    Article  Google Scholar 

  46. Alhabeb, M., Maleski, K., Anasori, B., Lelyukh, P., et al., Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2TxMXene), Chem. Mater., 2017, vol. 29, p. 7633.

    Article  Google Scholar 

  47. Bard, A.J. and Faulkner, L.R., Fundamentals and applications, Electrochem. Methods, 2001, vol. 2, p. 580.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadi Beitollahi.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fariba Beigmoradi, Hadi Beitollahi MXene/La3+ Doped ZnO/Hb Nanocomposite Modified Glassy Carbon Electrode as Novel Voltammetric Sensor for Determination of Hydrogen Peroxide. Surf. Engin. Appl.Electrochem. 57, 708–714 (2021). https://doi.org/10.3103/S106837552106003X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S106837552106003X

Keywords:

Navigation