Skip to main content
Log in

Kinetics of Antioxidant Activity of α-Tocopherol and Some of Its Homologues: Part 1. Review: Theoretical Model

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The first part of the theoretical study devoted to the description of the kinetics and mechanism of the lipid peroxidation process involving the complexes of cytochrome c and cardiolipin with account for the effect of an antioxidant is presented. The main components of the ROS (reactive oxygen species) and AOD (antioxidant defense) systems and their properties are considered. The key features of the activity of these systems and various channels of the influence of their components on each other, both intrasystemic and intersystemic, important for the optimal interaction of these systems in the organism, are discussed. Special attention is paid in the review to the experimental works where the properties and structure of the cytochrome c and cardiolipin complexes of various types, along with their peroxidase activity, are studied. In addition to two known ways to control the peroxidase activity of these complexes discussed in the literature, it is proposed to consider another way, which is connected with a possibility to include the lipophilic antioxidant molecules into the composition of the complexes under study. The proposed way to regulate the peroxidase activity, increasing the effectiveness of the peroxidase process control, opens up new opportunities to regulate the process of the apoptosis of cells. Based on the analysis of experimental works on this problem, a theoretical kinetic model of the peroxidase process is formulated, which includes two reaction pathways: an enzymatic pathway involving the complexes of cytochrome c and cardiolipin and a non-enzymatic pathway involving free radicals. A system of differential equations that describes the kinetics of the lipid peroxidation process is constructed with account for the inhibiting effect of the antioxidant. The obtained model system of the kinetic equations will be used to study and compare the antioxidant activity of vitamin E (α-tocopherol) and some of its homologues with a shortened side chain, relying on the available theoretical and experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Halliwell, B. and Gutteridge, J.M.C., Free Radical Biology and Medicine, Oxford: Oxford Univ. Press, 2015, 5th ed.

    Book  Google Scholar 

  2. Kulinskii, V.I., Sorosovskii Obraz. Zh., 1999, vol. 5, no. 1, pp. 2–7.

    Google Scholar 

  3. Vladimirov, Yu.A., General pathology of the cell, in Patologicheskaya fiziologiya. Uchebnik dlya meditsinskikh vuzov (Pathological Physiology: Manual for Medical Education Institutions), Ado, A.D., Ed., Moscow: Triada, 2000, pp. 16–50.

    Google Scholar 

  4. Men’shchikova, E.B., Lankin, V.Z., and Kandalintseva, N.V., Fenol’nye antioksidanty v biologii i meditsiny. Stroenie, svoistva, mekhanizmy deistviya (Phenolic Antioxidants in Biology and Medicine: Structure, Properties, and Action Mechanisms), Saarbrücken: LAP LAMBERT Academic, 2012.

    Google Scholar 

  5. Oxidative Stress and Diseases, Lushchak, V.I. and Gospodaryov, D.V., Eds., Rijeka: InTech, 2012.

  6. Zenkov, N.K., Lankin, V.Z., and Men’shchikova, E.B., Okislitel’nyi stress. Biokhimicheskii i patofiziologicheskii aspekty (Oxidative Stress: Biochemical and Pathophysiological Aspects), Moscow: Nauka, 2001.

    Google Scholar 

  7. Principles of Free Radical Biomedicine, Biochemistry Research Trends Series, Pantopoulos, K. and Schipper, H.M., Eds., New York: Nova Biomedical, 2011, vol. 1.

  8. Winterbourn, C.C., Nat. Chem. Biol., 2008, vol. 4, no. 5, pp. 278–286.

    Article  Google Scholar 

  9. Ray, P.D., Huang, B.W. and Tsuji, Y., Cell Signaling, 2012, vol. 24, no. 5, pp. 981–990.

    Article  Google Scholar 

  10. Bartosz, G., Biochem. Pharmacol., 2009, vol. 77, no. 8, pp. 1303–1315.

    Article  Google Scholar 

  11. Segal, A.W., Annu. Rev. Immunol., 2005, vol. 23, pp. 197–223.

    Article  Google Scholar 

  12. Kagan, V.E., Bayir, H.A., Belikova, N.A., Kapralov, O., et al., Free Radicals Biol. Med., 2009, vol. 46, no. 11, pp. 1439–1453.

    Article  Google Scholar 

  13. Kagan, V.E., Borisenko, G.G., Tyurina, Y.Y., Tyurin, V.A., et al., Free Radicals Biol. Med., 2004, vol. 37, no. 12, pp. 1963–1985.

    Article  Google Scholar 

  14. Kagan, V.E. Tyurin, V.A., Jiang, J., Tyurina, Y.Y., et al., Nat. Chem. Biol., 2005, vol. 1, pp. 223–232.

    Article  Google Scholar 

  15. Proskurnina, E.V. and Vladimirov, Yu.A., Free radicals as participants in regulatory and pathological processes, in Fundamental’nye nauki–meditsine. Biofizicheskie meditsinskie tekhnologii (Fundamental Sciences for Medicine: Biophysical Medical Tehcnologies), Grigor’ev, A.I. and Vladimirov, Yu.A., Eds., Moscow: MAKS Press, 2015, vol. 1, pp. 38–71.

    Google Scholar 

  16. Krasnovskii, A.A., Jr., Biophysics (Moscow), 1994, vol. 39, no. 2, pp. 197–211.

    Google Scholar 

  17. Metelitsa, D.A., Aktiviatsiya kisloroda fermentnymi sistemami (Oxygen Activation by Enzymatic Systems), Moscow: Nauka, 1982.

    Google Scholar 

  18. Rubin, A.B., Biofizika: uchebnik dlya biologicheskikh spetsial’nostei vuzov. Kniga 2. Biofizika kletochnykh protsessov (Biophysics: Manual for Biological Specialties of higher Education Institutions, Book 2: Biophysics of Cellular Processes), Moscow: Vysshaya Shkola, 1987.

    Google Scholar 

  19. Boveris, A., Methods Enzymol., 1984, vol. 105, pp. 429–435.

    Article  Google Scholar 

  20. Pryor, W.A., Annu. Rev. Physiol., 1986, vol. 48, pp. 657–667.

    Article  Google Scholar 

  21. Elchuri, S., Oberley, T.D., Qi, W., Eisenstein, R.S., et al., Oncogene, 2005, vol. 24, no. 3, pp. 367–380.

    Article  Google Scholar 

  22. Muller, F.L., Song, W., Liu, Y., Chaudhuri, A., et al., Free Radicals Biol. Med., 2006, vol. 40, pp. 1993–2004.

    Article  Google Scholar 

  23. Li, Y., Huang, T.T., Carlson, E.J., Melov, S., et al., Nat. Genet., 1995, vol. 11, no. 4, pp. 376–381.

    Article  Google Scholar 

  24. Hayyan, M., Hashim, M.A., and Al-Nashef, I.M., Chem. Rev., 2016, vol. 116, no. 5, pp. 3029–3085.

    Article  Google Scholar 

  25. Tainer, J.A., Getzoff, E.D., Richardson, J.S., and Richardson, D.C., Nature, 1983, vol. 306, no. 5940, pp. 284–287.

    Article  Google Scholar 

  26. McCord, J.M. and Fridovich, I., Free Radicals Biol. Med., 1988, vol. 5, nos. 5–6, pp. 363–369.

    Article  Google Scholar 

  27. Borgstahl, G.E., Parge, H.E., Hickey, M.J., Beyer, W.F., et al., Cell, 1992, vol. 71, no. 1, pp. 107–118.

    Article  Google Scholar 

  28. Barondeau, D.P., Kassmann, C.J., Bruns, C.K., Tainer, J.A., et al., Biochemistry, 2004, vol. 43, no. 25, pp. 8038–8047.

    Article  Google Scholar 

  29. Alscher, R.G., Erturk, N., and Heath, L.S., J. Exp. Bot., 2002, vol. 53, no. 372, pp. 1331–1341.

    Article  Google Scholar 

  30. Raychaudhuri, S.S. and Deng, X.W., Bot. Rev., 2008, vol. 66, no. 1, pp. 89–98.

    Article  Google Scholar 

  31. Chance, B. and Maehly, A.C., Methods Enzymol., 1955, vol. 2, pp. 764–775.

    Article  Google Scholar 

  32. Vainshtein, B.K., Melik-Adamyan, W.R., Barynin, V.V., Vagin, A.A., et al., Nature, 1981, vol. 293, no. 5831, pp. 411–412.

    Article  Google Scholar 

  33. Fita, I. and Rossmann, M.G., J. Mol. Biol., 1985, vol. 185, no. 1, pp. 21–37.

    Article  Google Scholar 

  34. Meister, A., J. Biol. Chem., 1988, vol. 263, no. 33, pp. 17205–17208.

    Google Scholar 

  35. Mills, G.C., J. Biol. Chem., 1957, vol. 229, no. 1, pp. 189–197.

    Google Scholar 

  36. Krauth-Siegel, R.L., Saleh, M., Untucht-Grau, R., Schirmer, R.H., et al., Eur. J. Biochem., 1982, vol. 121, no. 2, pp. 259–267.

    Article  Google Scholar 

  37. Sies, H., Free Radicals Biol. Med., 1999, vol. 27, nos. 9–10, pp. 916–921.

    Article  Google Scholar 

  38. Lu, S.C., FASEB J., 1999, vol. 13, no. 10, pp. 1169–1183.

    Article  Google Scholar 

  39. Fernandes, A.P. and Holmgren, A., Antioxid. Redox Signaling, 2004, vol. 6, no. 1, pp. 63–74.

    Article  Google Scholar 

  40. Holmgren, A., J. Biol. Chem., 1989, vol. 264, no. 24, pp. 13963–13966.

    Google Scholar 

  41. Rush, G.F., Gorski, J.R., Ripple, M.G., Sowinski, J., et al., Toxicol. Appl. Pharmacol., 1985, vol. 78, no. 3, pp. 473–483.

    Article  Google Scholar 

  42. Ogawa, K., Suzuki, K., Okutsu, M., Yamazaki, K., et al., Immun. Ageing, 2008, vol. 5, pp. 13-1–13-8.

    Article  Google Scholar 

  43. Rhee, S., Chae, H., and Kim, K., Free Radicals Biol. Med., 2005, vol. 38, no. 12, pp. 1543–1552.

    Article  Google Scholar 

  44. Claiborne, A., Yeh, J., Mallett, T., Luba, J., et al., Biochemistry, 1999, vol. 38, no. 47, pp. 15407–15416.

    Article  Google Scholar 

  45. Jonsson, T.J. and Lowther, W.T., Subcell. Biochem., 2007, vol. 44, pp. 115–141.

    Article  Google Scholar 

  46. Budanov, A.V., Sablina, A.A., Feinstein, E., Koonin, E.V., et al., Science, 2003, vol. 304, no. 5670, pp. 596–600.

    Article  Google Scholar 

  47. Ro, S.-H., Nam, M., Jang, I., Park, H.-W., et al., Proc. Natl. Acad. Sci. U.S.A., 2014, vol. 111, no. 21, pp. 7849–7854.

    Article  Google Scholar 

  48. Arnér, E.S. and Holmgren, A., Eur. J. Biochem., 2000, vol. 267, no. 20, pp. 6102–6109.

    Article  Google Scholar 

  49. Shakhmardanova, S.A., Gulevskaya, O.N., Seletskaya, V.V., Zelenskaya, A.V., et al., Zh. Fundam. Med. Biol., 2016, no. 3, pp. 4–5.

    Google Scholar 

  50. Morel, Y. and Barouki, R., Biochem. J., 1999, vol. 342, pp. 481–496.

    Article  Google Scholar 

  51. Halliwell, B., Lancet, 2000, vol. 355, no. 9210, pp. 1179–1180.

    Article  Google Scholar 

  52. Zaitsev, V.G., Ostrovskii, O.V., and Zakrevskii, V.I., Eksp. Klin. Farmakol., 2003, vol. 66, no. 4, pp. 66–70.

    Google Scholar 

  53. Vattem, D.A., Ghaedian, R., and Shetty, K., Asia Pac. J. Clin. Nutr., 2005, vol. 14, no. 2, pp. 120–130.

    Google Scholar 

  54. Walker, R.B. and Everette, J.D., J. Agric. Food Chem., 2009, vol. 57, no. 4, pp. 1156–1161.

    Article  Google Scholar 

  55. Roy, M.K., Koide, M., Rao, T.P., Okubo, T., et al., Int. J. Food Sci. Nutr., 2010, vol. 61, no. 2, pp. 109–124.

    Article  Google Scholar 

  56. Pulido, R., Bravo, L., and Saura-Calixto, F., J. Agric. Food Chem., 2000, vol. 48, no. 8, pp. 3396–3402.

    Article  Google Scholar 

  57. Meyer, A.S., Yi, O.S., Pearson, D.A., Waterhouse, A.L., et al., J. Agric. Food Chem., 1997, vol. 45, no. 5, pp. 1638–1643.

    Article  Google Scholar 

  58. Nijveldt, R.J., van Nood, E., van Hoorn, D.E.C., Boelens, P.G., et al., Am. J. Clin. Nutr., 2001, vol. 74, pp. 418–425.

    Article  Google Scholar 

  59. Ross, J.A. and Kasum, C.M., Annu. Rev. Nutr., 2002, vol. 22, pp. 19–34.

    Article  Google Scholar 

  60. Middleton, E., Jr., Kandaswami, C., and Theoharides, T.C., Pharmacol. Rev., 2000, vol. 52, no. 4, pp. 673–751.

    Google Scholar 

  61. Soobrattee, M.A., Neergheen, V.S., Luximon-Ramma, A., Aruoma, O.I., et al., Mutat. Res., 2005, vol. 579, nos. 1–2, pp. 200–213.

    Article  Google Scholar 

  62. Bors, W., Michel, C., and Saran, M., Methods Enzymol., 1994, vol. 234, pp. 420–429.

    Article  Google Scholar 

  63. Heim, K.E., Tagliaferro, A.R., and Bobilya, D.J., J. Nutr. Biochem., 2002, vol. 13, pp. 572–584.

    Article  Google Scholar 

  64. van Acker, S.A., de Groot, M.J., van den Berg, D.J., Tromp, M.N., et al., Chem. Res. Toxicol., 1996, vol. 9, pp. 1305–1312.

    Article  Google Scholar 

  65. Pietta, P.G., J. Nat. Prod., 2000, vol. 63, pp. 1035–1042.

    Article  Google Scholar 

  66. Afanas’ev, I.B., Dorozhko, A.I., Brodskii, A.V., Kostyuk, V.A., et al., Biochem. Pharmacol., 1989, vol. 38, no. 11, pp. 1763–1769.

    Article  Google Scholar 

  67. Cowan, M.M., Clin. Microbiol. Rev., 1999, vol. 12, no. 4, pp. 564–582.

    Article  MathSciNet  Google Scholar 

  68. Cushnie, T.P.T., Hamilton, V.E.S., and Lamb, A.J., Microbiol. Res., 2003, vol. 158, pp. 281–289.

    Article  Google Scholar 

  69. Cushnie, T.P.T. and Lamb, A.J., Int. J. Antimicrob. Agents, 2005, vol. 26, no. 5, pp. 343–356.

    Article  Google Scholar 

  70. Kim, H.P., Son, K.H., Chang, H.W., and Kang, S.S., J. Pharmacol. Sci., 2004, vol. 96, pp. 229–245.

    Article  Google Scholar 

  71. Azarova, O.V. and Galaktionova, L.P., Khim. Rastit. Syr’ya, 2012, no. 4, pp. 61–78.

    Google Scholar 

  72. Belitskii, G.A., Kirsanov, K.I., Lesovaya, E.A., and Yakubovskaya, M.G., Usp. Mol. Onkol., 2014, vol. 1, no. 1, pp. 56–68.

    Google Scholar 

  73. Vladimirov, Y.A., Free radicals in cell life: two sides of the same coin, in Oxidative Stress at Molecular, Cellular and Organ Levels, Johnson, P. and Boldyrev, A.A., Eds., Trivandrum: Research Signpost, 2002, pp. 13–43.

    Google Scholar 

  74. Vladimirov, Yu.A., Demin, E.M., Proskurnina, E.V., and Osipov, A.N., Biochemistry (Moscow) Suppl. Ser. A: Membr. Cell Biol., 2009, vol. 3, no. 4, pp. 467–477.

    Article  Google Scholar 

  75. Vladimirov, Yu.A., Proskurnina, E.V., Izmailov, D.Yu., Novikov, A.A., et al., Biochemistry (Moscow), 2006, vol. 71, no. 9, pp. 998–1005.

    Article  Google Scholar 

  76. Vladimirov, Yu.A., Proskurnina, E.V., Izmailov, D.Yu., Novikov, A.A., et al., Biochemistry (Moscow), 2006, vol. 71, no. 9, pp. 989–997.

    Article  Google Scholar 

  77. Vladimirov, Yu.A., Nol, Y.T., and Volkov, V.V., Crystallogr. Rep., 2011, vol. 56, no. 4, pp. 553–559.

    Article  Google Scholar 

  78. Belikova, N.A., Vladimirov, Y.A., Osipov, A.N., Kapralov, A.A., et al., Biochemistry (Moscow), 2006, vol. 45, no. 15, pp. 4998–5009.

    Article  Google Scholar 

  79. Kerr, J.F., Wyllie, A.H., and Currie, A.R., Br. J. Cancer, 1972, vol. 26, no. 4, pp. 239–257.

    Article  Google Scholar 

  80. Zenkov, N.K., Men’shchikova, E.B., Vol’skii, N.N., and Kozlov, V.A., Usp. Sovrem. Biol., 1999, vol. 119, no. 5, pp. 440–450.

    Google Scholar 

  81. Hengartner, M.O., Nature, 2000, vol. 407, pp. 770–776.

    Article  Google Scholar 

  82. Levine, I.N., Molecular Spectroscopy, New York: Wiley, 1975.

    Google Scholar 

  83. Likhtenshtein, G.I., Metod spinovykh metok v molekulyarnnoi biologii (Use of a Spin Labeling Method in Molecular Biology), Moscow: Nauka, 1974.

    Google Scholar 

  84. Ershov, B.A., Spektroskopiya YaMR v organicheskoi khimii. Uchebnoe posobie dlya vuzov (NMR Spectroscopy in Organic Chemistry: Manual for Higher Education Institutions), St. Petersburg: S.-Peterb. Gos. Univ., 1995.

    Google Scholar 

  85. Gabuda, S.P. and Rzhavin, A.F., Yadernyi magnitnyi rezonans v kristallogidratakh i gidratirovannykh belkakh (NMR in Crystalline Hydrates and Hydrated Proteins), Novosibirsk: Nauka, 1978.

    Google Scholar 

  86. Yashroy, R.C., J. Biosci., 1990, vol. 15, no. 4, pp. 281–288.

    Article  Google Scholar 

  87. Caldwell, R.L. and Caprioli, R.M., Mol. Cell Proteomics, 2005, vol. 4, no. 4, pp. 394–401.

    Article  Google Scholar 

  88. McDonnell, L.A. and Heeren, R.M., Mass Spectrom. Rev., 2007, vol. 26, no. 4, pp. 606–643.

    Article  Google Scholar 

  89. Vladimirov, Yu.A., Sorosovskii Obraz. Zh., 2000, vol. 6, no. 12, pp. 13–19.

    Google Scholar 

  90. Vladimirov, Yu.A. and Archakov, A.I., Perekisnoe okislenie lipidov v biologicheskikh membranakh (Lipid Peroxidation in Biological Membranes), Moscow: Nauka, 1972.

    Google Scholar 

  91. Vladimirov, Yu.A. and Proskurina, E.V., Usp. Biol. Khim., 2009, vol. 49, pp. 341–388.

    Google Scholar 

  92. Mavridou, D.A., Ferguson, S.J., and Stevens, J.M., IUBMB Life, 2013, vol. 65, no. 3, pp. 209–216.

    Article  Google Scholar 

  93. Ow, Y.P., Green, D.R., Hao, Z., and Mak, T.W., Nat. Rev. Mol. Cell Biol., 2008, vol. 9, no. 7, pp. 532–542.

    Article  Google Scholar 

  94. Liu, X., Kim, C.N., Yang, J., Jemmerson, R., and Wang, X., Cell, 1996, vol. 86, no. 1, pp. 147–157.

    Article  Google Scholar 

  95. Zhivotovsky, B., Orrenius, S., Brustugun, O.T., and Døskeland, S.O., Nature, 1998, vol. 391, no. 6666, pp. 449–450.

    Article  Google Scholar 

  96. Biokhimiya. Uchebnik dlya vuzov (Biochemistry: Manual for Higher Education Institutions), Severin, E.S., Ed., Moscow: GEOTAR-Media, 2004.

  97. Schlame, M., J. Lipid Res., 2008, vol. 49, no. 8, pp. 1607–1620.

    Article  Google Scholar 

  98. Schlame, M., Brody, S., and Hostetler, K.Y., Eur. J. Biochem., 1993, vol. 212, no. 3, pp. 727–733.

    Article  Google Scholar 

  99. Murray, R.K., Granner, D.K., Mayes, P.A., and Rodwell, V.W., Harpers Illustrated Biochemistry (Lange Medical Book), New York, NY: McGraw-Hill, 1993.

    Google Scholar 

  100. Koolman, J. and Röhm, K.-H., Taschenatlas der Biochemie, Stuttgart: Georg Thieme Verlag, 1994.

    Google Scholar 

  101. Bykov, V.L., Tsitologiya i obshchaya gistologiya (Cytology and General Histology), St. Petersburg: SOTIS, 2002.

    Google Scholar 

  102. Gistologiya, embriologiya, tsitologiya: uchebnik (Histology, Embryology, and Cytology: Manual), Afanas’ev, Yu.I. and Yurina, N.A., Eds., Moscow: GEOTAR-Media, 2012, 6th ed.

  103. Vikulina, A.S., Alekseev, A.V., Proskurnina, E.V., and Vladimirov, Y.A., Biochemistry (Moscow), 2015, vol. 80, no. 10, pp. 1298–1302.

    Article  Google Scholar 

  104. Vladimirov, Y.A., Proskurnina, E.V., and Alekseev, A.V., Biochemistry (Moscow), 2013, vol. 78, no. 10, pp. 1086–1097.

    Article  Google Scholar 

  105. Kapralov, A.A., Yanamala, N., Tyurina, Y.Y., Castro, L., et al., Biochim. Biophys. Acta, 2011, vol. 1808, no. 9, pp. 2147–2155.

    Article  Google Scholar 

  106. Basova, L.V., Kurnikov, I.V., Wang, L., Ritov, V.B., et al., Biochemistry, 2007, vol. 46, no. 11, pp. 3423–3434.

    Article  Google Scholar 

  107. Kagan, V.E. Chu, C.T., Tyurina, Y.Y., Cheikhi, A., et al., Chem. Phys. Lipids, 2014, vol. 179, pp. 64–69.

    Article  Google Scholar 

  108. Ott, M., Robertson, J., Gogvadze, V., Zhivotovsky, B., et al., Proc. Natl. Acad. Sci. U.S.A., 2002, vol. 99, no. 3, pp. 1259–1263.

    Article  Google Scholar 

  109. Pop, C. and Salvesen, G.S., J. Biol. Chem., 2009, vol. 284, no. 33, pp. 21777–21781.

    Article  Google Scholar 

  110. Hanks, S.K., Quinn, A.M., and Hunter, T., Science, 1988, vol. 241, no. 4861, pp. 42–52.

    Article  Google Scholar 

  111. Hunter, T., Curr. Opin. Cell Biol., 2009, vol. 21, no. 2, pp. 140–146.

    Article  Google Scholar 

  112. Hunter, T. and Eckhart, W., Cell, 2004, vol. 116, suppl. 2, pp. S35–S39.

    Google Scholar 

  113. Pecina, P., Borisenko, G.G., Belikova, N.A., Tyurina, Y.Y., et al., Biochemistry, 2010, vol. 49, no. 31, pp. 6705–6714.

    Article  Google Scholar 

  114. Belikova, N.A., Tyurina, Y.Y., Borisenko, G., Tyurin, V., et al., J. Am Chem. Soc., 2009, vol. 131, no. 32, pp. 11288–11289.

    Article  Google Scholar 

  115. Petrosillo, G., Ruggiero, F.M., and Paradies, G., FASEB J., 2003, vol. 17, no. 15, pp. 2202–2208.

    Article  Google Scholar 

  116. Samhann-Arias, A.K., Tyurina, Y.Y. and Kagan, V.E., J. Clin. Biochem. Nutr., 2011, vol. 48, no. 1, pp. 91–95.

    Article  Google Scholar 

  117. Kagan, V.E., Serbinova, E.A., Forte, T., Scita, G., et al., J. Lipid Res., 1992, vol. 33, pp. 385–397.

    Google Scholar 

  118. Atkinson, J., Harroun, T., Wassall, S.R., Stillwell, W., et al., Mol. Nutr. Food Res., 2010, vol. 54, pp. 641–651.

    Article  Google Scholar 

  119. Niki, E. and Noguchi, N., Acc. Chem. Res., 2004, vol. 37, pp. 45–51.

    Article  Google Scholar 

  120. Kagan, V.E., Serbinova, E.A., and Packer, L., Arch. Biochem. Biophys., 1990, vol. 282, pp. 221–225.

    Article  Google Scholar 

  121. Lucarini, M. and Pedulli, G.F., Overview of antioxidant activity of vitamin E, in The Encyclopedia of Vitamin E, Preedy, V.R. and Watson, R.R., Eds., Wallingford: CABI, 2007, pp. 3–10.

    Google Scholar 

  122. Mukai, K., Itoh, S., and Morimoto, H., J. Biol. Chem., 1992, vol. 267, no. 31, pp. 22277–22281.

    Google Scholar 

  123. Nagaoka, S.-I., Inoue, M., Nishioka, C., Nishioku, Y., et al., J. Phys. Chem. B, 2000, vol. 104, no. 4, pp. 856–862.

    Article  Google Scholar 

  124. Demin, E.M., Proskurnina, E.V., and Vladimirov, Yu.A., Moscow Univ. Chem. Bull., 2008, vol. 63, no. 5, pp. 297–302.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Yu. Kanarovskii.

Additional information

Original Russian Text © E.Yu. Kanarovskii, O.V. Yaltychenko, N.N. Gorinchoy, 2018, published in Elektronnaya Obrabotka Materialov, 2018, No. 5, pp. 48–66.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanarovskii, E.Y., Yaltychenko, O.V. & Gorinchoy, N.N. Kinetics of Antioxidant Activity of α-Tocopherol and Some of Its Homologues: Part 1. Review: Theoretical Model. Surf. Engin. Appl.Electrochem. 54, 481–497 (2018). https://doi.org/10.3103/S1068375518050058

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375518050058

Keywords

Navigation