Skip to main content
Log in

Comparison of ZnS thin films fabricated by electrodeposition and spray pyrolysis methods

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

In this study, ZnS thin films were fabricated using an electrodeposition method from an aqueous electrolytic bath on a molybdenum (Mo) substrate and a spray pyrolysis method on a glass substrate. The potential range in which alloy electrodeposition of Zn and S could be carried out in a solution containing ZnSO4, Na2S2O3 and Na3C6H5O7 was determined by cyclic voltammetry. It was revealed that the thin film fabricated by the electrodeposition method was of ZnS and ZnO compounds and its microstructure was porous. The thin film prepared by the spray pyrolysis was smooth, with nano-grains. The band gap of the thin film fabricated by the spray pyrolysis was 3.72 eV, which was higher than that for the thin film fabricated by electrodeposition: 3.64 eV. Finally, the thin film fabricated by the spray pyrolysis was pure ZnS with a hexagonal structure, whereas that by electrodeposition was of ZnS (with a cubic structure) and ZnO compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mandati, S., Sarada, B., Dey, S., and Joshi, S., Electron. Mater. Lett., 2015, vol. 11, no. 4, pp. 618–624.

    Article  Google Scholar 

  2. Li, F.-Y., Dang, X.-Y., Zhang, L., Liu, F.-F., et al., Optoelectron. Lett., 2014, vol. 10, no. 4, pp. 266–268.

    Article  Google Scholar 

  3. Xiang, J., Huang, X., Lin, G., Tang, J., Ju, C., and Miao, X., J. Electron. Mater., 2014, vol. 43, no. 7, pp. 2658–2666.

    Article  Google Scholar 

  4. Chou, S.-H., Hsiao, Y.-J., Fang, T.-H., and Chou, P.-H., J. Mater. Eng. Perform., 2015, vol. 24, no. 6, pp. 2282–2286.

    Article  Google Scholar 

  5. Sharbati, S., Keshmiri, S., McGoffin, J.T., and Geisthardt, R., Appl. Phys. A: Mater. Sci. Process., 2015, vol. 118, no. 4, pp. 1259–1265.

    Article  Google Scholar 

  6. Witte, W., Hariskos, D., and Powalla, M., Thin Solid Films, 2011, vol. 519, no. 21, pp. 7549–7552.

    Article  Google Scholar 

  7. Guo, P., Jiang, J., Shen, S., and Guo, L., Int. J. Hydrogen Energ., 2013, vol. 38, no. 29, pp. 13097–13103.

    Article  Google Scholar 

  8. Weinhardt, L., Heske, C., Umbach, E., Niesen, T.P., et al., Appl. Phys. Lett., 2004, vol. 84, no. 16, pp. 3175–3177.

  9. Mishra, A.K., Mishra, S.K., Pandey, S.P., and Mishra, K.L., Macromol. Symp., 2015, vol. 347, no. 1, pp. 49–51.

    Article  Google Scholar 

  10. Chen, X., Liu, W., Zhang, G., Wu, N., Shi, L., and Pan, S., Adv. Mater. Sci. Eng., 2015, vol. 2015, pp. 1–8.

  11. Magerramov, A.M., Ramazanov, M.A., and Mustafaeva, A.K., Surf. Eng. Appl. Electrochem., 2010, vol. 46, no. 3, pp. 281–284.

    Article  Google Scholar 

  12. Yang, Y., Zheng, Y., Cao, W., Titov, A., et al., Nat. Photon., 2015, vol. 9, no. 4, pp. 259–266.

    Google Scholar 

  13. Park, S., Kim, S., Ko, H., and Lee, C., J. Electroceram., 2014, vol. 33, nos. 1–2, pp. 75–81.

  14. Sivakumar, P., Gaurav Kumar, G.K., Sivakumar, P., and Renganathan, S., J. Nanostruct. Chem., 2014, vol. 4, no. 3, pp. 1–9.

    Google Scholar 

  15. La Porta, F.A., Ferrer, M.M., de Santana, Y.V.B., Raubach, C.W., et al., J. Alloy Compd., 2013, vol. 556, pp. 153–159.

  16. Zhang, Y.C., Wang, G.Y., Hu, X.Y., and Chen, W.W., Mater. Res. Bull., 2006, vol. 41, no. 10, pp. 1817–1824.

    Article  Google Scholar 

  17. Kumar, S. and Verma, N., J. Electron. Mater., 2015, vol. 44, no. 8, pp. 2829–2834.

    Article  Google Scholar 

  18. Kumar, V., Sharma, M.K., Sandhub, G.S., Sharma, S., et al., IWPSD 2007, Int. Workshop, Mumbai: Inst. Electr. Electron. Eng., 2007.

  19. Murali, K., IOSR J. Appl. Phys., 2014, vol. 6, no. 3, pp. 9–14.

    Article  Google Scholar 

  20. Hennayaka, H. and Lee, H.S., Thin Solid Films, 2013, vol. 548, pp. 86–90.

  21. Mkawi, E., Ibrahim, K., Ali, M., Farrukh, M., et al., J. Electron. Mater., 2015, vol. 44, no. 10, pp. 3380–3387.

  22. Hwang, D., Ahn, J., Hui, K., and Son, Y., Nanoscale Res. Lett., 2012, vol. 7, no. 1, pp. 1–7.

    Article  Google Scholar 

  23. McCloy, J.S. and Potter, B.G., Opt. Mater. Express., 2013, vol. 3, no. 9, pp. 1273–1278.

    Article  Google Scholar 

  24. Xin, Z.-J., Peaty, R.J., Rutt, H.N., and Eason, R.W., Semicond. Sci. Technol., 1999, vol. 14, no. 8, pp. 695–698.

    Article  Google Scholar 

  25. Lopez, M., Espinos, J., Martin, F., Leinen, D., et al., J. Cryst. Growth, 2005, vol. 285, no. 1, pp. 66–75.

  26. Tokuda, T. and Yoshino, K., Phys. Status Solidi C, 2013, vol. 10, nos. 7–8, pp. 1102–1106.

  27. Wei, A., Liu, J., Zhuang, M., and Zhao, Y., Mater. Sci. Semicond. Process., 2013, vol. 16, no. 6, pp. 1478–1484.

    Article  Google Scholar 

  28. Heidari, G., Tavakoli, H., and Mousavi Khoie, S.M., J. Mater. Eng. Perform., 2010, vol. 19, no. 8, pp. 1183–1188.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Heidari.

Additional information

The article is published in the original.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Izi, M., Heidari, G., Mousavi Khoie, S.M. et al. Comparison of ZnS thin films fabricated by electrodeposition and spray pyrolysis methods. Surf. Engin. Appl.Electrochem. 53, 245–249 (2017). https://doi.org/10.3103/S1068375517030085

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375517030085

Keywords

Navigation