Skip to main content
Log in

Direct surface relief formation in nanomultilayers based on chalcogenide glasses: A review

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

In this review the investigations of direct surface relief formations in nanomultilayers from chalcogenide glasses are summarized. Chalcogenide glasses are known to exhibit several photoinduced phenomena, both scalar and vectorial, which are connected with photoinduced structural transformations, defects creation, and atoms diffusion. Surface relief formation in chalcogenide glasses films has been intensively studied due to its applicability to reversibly form versatile patterns and diffractive optical elements. Both intensity and polarization holography have been employed to generate surface relief structures in chalcogenide glasses materials, including monolayers and multilayer structures. The research outlined here has not only led to better understanding of the material properties that affect the optical performance of chalcogenides structures, but also illustrated the momentum in the field that has led to the development of high-performance nanostructured devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Trunov, M.L., Lytvyn, P.M., Nagy, P.M. and Dyachynska, O.M., Appl. Phys. Lett., 2010, vol. 96, p. 111908.

    Article  Google Scholar 

  2. Trunov, M.L., Lytvyn, P.M. and Dyachyns’ka, O.M., Appl. Phys. Lett., 2010, vol. 97, p. 031905.

    Article  Google Scholar 

  3. Trunov, M.L., Lytvyn, P.M., Yannopoulos, S.N., Szabo, I.A. and Kokenyesi, S., Appl. Phys. Lett., 2011, vol. 99, p. 051906.

    Article  Google Scholar 

  4. Voynarovych, I., Schroeter, S., Poehlmann, R., and Vlcek, M., J. Phys. D: Appl. Phys., 2015, vol. 48, p. 265106.

    Article  Google Scholar 

  5. Kaganovskii, Yu., Beke, D.L., Charnovych, S.S., Kokenyesi, S. and Trunov, M.L., J. Appl. Phys., 2011, vol. 110, p. 063502.

    Article  Google Scholar 

  6. Kaganovskii, Yu., Trunov, M.L., Beke, D.L. and Kokenyesi, S., Mater. Lett., 2012, vol. 66, p. 159.

    Article  Google Scholar 

  7. Feigel, A., Veinger, M., Sfez, B., Arsh, A., Klebanov, M., and Lyubin, V., Appl. Phys. Lett., 2003, vol. 83, p. 4480.

    Article  Google Scholar 

  8. Wong, S., Deubel, M., Perez-Willard, F., John, S., Ozin, G.A., Wegener, M., and von Freymann, G., Adv. Mater., 2006, vol. 18, p. 265.

    Article  Google Scholar 

  9. Tanaka, K., Chalcogenide glasses, in Encyclopedia of Materials: Science and Technology, Buschow, K.H.J., Eds., Amsterdam: Elsevier, 2001, pp. 1123–1131.

  10. Tanaka, K., J. Non-Cryst. Solids, 2003, vol. 21, pp. 326–327.

    Google Scholar 

  11. Kurioz, Y., Klebanov, M., Lyubin, V., Eisenberg, N., et al., Mol. Cryst. Liq. Cryst., 2008, vol. 489, pp. 94–104.

    Article  Google Scholar 

  12. Takats, V., Nemec, P., Miller, A.C., Jain, H., et al., Opt. Mater., 2010, vol. 32, pp. 677–679.

    Article  Google Scholar 

  13. Dikova, J., Vlaeva, I., Babeva, Tz., Yovcheva, T., et al., Opt. Laser Eng., 2012, vol. 50, pp. 838–843.

    Article  Google Scholar 

  14. Saito, I., Masuzawa, T., Kudo, Y., Pittner, S., et al., J. Non-Cryst. Solids, 2013, vol. 378, pp. 96–100.

    Article  Google Scholar 

  15. Kikineski, A., Mishak, A., Palyok, V., and Shiplyak, M., Nanostruct. Mater., 1999, vol. 12, pp. 417–420.

    Article  Google Scholar 

  16. Palyok, V., Mishak, A., Szabo, I., Beke, D.L., et al., Appl. Phys. A: Mater. Sci. Process., 1999, vol. 68, pp. 489–492.

    Article  Google Scholar 

  17. Popescu, M., Andries, A., Ciumas, V., Iovu, M., Sutov, S., and Tciuleanu, D., in Fizica Sticelor Calcogenice, Bucuresti, S., Ed., Chisinau Stiinta, 1996.

    Google Scholar 

  18. Kikineshi, A., in Proc. Int. Workshop on Physics and Technology of Thin Films (IWTF 2003), Tehran, Iran, February 22–March 6, 2003, Singapore World Sci., 2004, p. 548.

    Google Scholar 

  19. Lyubin, V., Klebanov, M., Bar, I., Rosenwaks, S., et al., J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom., 1997, vol. 15, no. 3, p. 823.

    Article  Google Scholar 

  20. Indutnij, I.Z., Kostishin, M.T., Romanenko, P.F., and Stronskij, A.V., Infrared Res. Mater., 1991, vol. 19, p. 239.

    Google Scholar 

  21. Kolomiets, B.T. and Lyubin, V.M., Mater. Res. Bull., 1978, vol. 13, p. 1343.

    Article  Google Scholar 

  22. Trunov, M.L., JETP Lett., 2007, vol. 86, p. 313.

    Article  Google Scholar 

  23. Trunov, M.L., J. Phys. D: Appl. Phys., 2008, vol. 41, p. 074011.

    Article  Google Scholar 

  24. Trunov, M.L., Bilanich, V.S. and Dub, S.N., J. Non- Cryst. Solids, 2007, vol. 353, p. 1904.

    Article  Google Scholar 

  25. Fischer, M., Galstyan, T., Valee, R. and Saliminia, A., Synth. Met., 2002, vol. 127, p. 303.

    Article  Google Scholar 

  26. Ikeda, Y. and Shimakawa, K., J. Non-Cryst. Solids, 2004, vol. 338, p. 539.

    Article  Google Scholar 

  27. Hegedus, J., Kohary, K., Pettifor, D.G., Shimakava, K., and Kugler, S., Phys. Rev. Lett., 2005, vol. 95, no. 20, art. 206803.

    Article  Google Scholar 

  28. Palyok, V., Szabo, I.A., Beke, D.L. and Kikineshi, A., Appl. Phys. A: Mater. Sci. Process., 2002, vol. 74, p. 683.

    Article  Google Scholar 

  29. Kokenyesi, S., Ivan, I., Takats, V., Palinkas, J., et al., J. Non-Cryst. Solids, 2007, vol. 353, pp. 1470–1473.

    Article  Google Scholar 

  30. Ivan, I. and Kikineshi, A., J. Optoelectron. Adv. Mater., 2002, vol. 4, p. 743.

    Google Scholar 

  31. Ivan, I., Beke, D.L., Kokenyesi, S., Szabo, I.A., and Csik, A., J. Optoelectron. Adv. Mater., 2005, vol. 7, p. 1831.

    Google Scholar 

  32. Kikineshi, A., Malyovanik, M., Messaddeq, Y., Pinzenik, V., et al., J. Non-Cryst. Solids, 2004, vol. 561, pp. 338–340.

    Google Scholar 

  33. Kokenyesi, S., J. Optoelectron. Adv. Mater., 2006, vol. 8, p. 2093.

    Google Scholar 

  34. Takats, V., Vojnarovich, I., Pinzenik, V., Mojzes, I., Kokenyesi, S., and Sangunni, K.S., Chem. Solids, 2007, vol. 68, p. 943.

    Article  Google Scholar 

  35. Vinogradova, G.Z., Stekloobrazovanie i fazovye ravnovesiya v khal’kogenidnykh sistemakh. Dvoinye i troinye sistemy (Glass Formation and Phase Equilibrium in Chalcogenide Systems: Double and Triple Systems), Moscow Nauka, 1984.

    Google Scholar 

  36. Takats, V., Vojnarovich, I., Csarnovich, I., Csik, A., et al., J. Non-Cryst. Solids, 2009, vol. 355, pp. 1962–1965.

    Article  Google Scholar 

  37. Ionov, R. and Nesheva, D., Thin Solid Films, 1992, vol. 213, pp. 230–234.

    Article  Google Scholar 

  38. Malyovanik, M., Ivan, S., Csik, A., Langer, G., Beke, D.L., and Kokenyesi, S., Appl. Phys., 2003, vol. 93, p. 139.

    Article  Google Scholar 

  39. Abaskin, V., Achimova, E., Meshalkin, A., Prisacar, A., et al., Surf. Eng. Appl. Electrochem., 2016, vol. 52, no. 4, pp. 380–386.

    Article  Google Scholar 

  40. Naik, R., Adarsh, K.V., Ganesan, R., Sangunni, K.S., et al., J. Non-Cryst. Solids, 2009, vol. 355, pp. 1836–1839.

    Article  Google Scholar 

  41. Kikineshi, A., Palyok, V., Szabo, I.A., Shipljak, M., et al., J. Non-Cryst. Solids, 2003, vols. 326–327, pp. 484–488.

    Article  Google Scholar 

  42. Stronski, A., Achimova, E., Paiuk, A., Abaskin, V., et al., J. Non-Cryst. Solids, 2015, vol. 409, pp. 43–48.

    Article  Google Scholar 

  43. Trunov, M.L., Lytvyn, P.M., Nagy, P.M., and Dyachynska, O.M., Appl. Phys. Lett., 2010, vol. 96, p. 111908.

    Article  Google Scholar 

  44. Nikolova, L. and Ramanujam, P.S., Polarization Holography, Cambridge Cambridge Univ. Press, 2009.

    Book  Google Scholar 

  45. Zhdanov, V.G., Kolomiets, B.T., Lyubin, V.M. and Malinovskii, V.K., Phys. Status Solidi A, 1979, vol. 52, pp. 621–626.

    Article  Google Scholar 

  46. Tikhomirov, V.K., Adriaenssens, G.J. and Elliott, S.R., Phys. Rev. B, 1997, vol. 55, pp. R660–R663.

  47. Lyubin, V.M. and Tikhomirov, V.K., J. Non-Cryst. Solids, 1989, vol. 114, pp. 133–135.

    Article  Google Scholar 

  48. Abdulhalim, I., Gelbaor, M., Klebanov, M., and Lyubin, V., Opt. Mater. Express, 2011, vol. 1, no. 7, pp. 1192–1201.

    Article  Google Scholar 

  49. Lyubin, V., Klebanov, M., Feigel, A., and Sfez, B., Thin Solid Films, 2004, vol. 459, pp. 183–186.

    Article  Google Scholar 

  50. Kwak, C.H., Kim, J.T. and Lee, S.S., Opt. Lett., 1988, vol. 13, pp. 437–439.

    Article  Google Scholar 

  51. Ozols, A., Reinfelde, M., Nordmanc, O., and Nordman, N., Proc. SPIE, 2001, vol. 4415, p. 425471.

    Google Scholar 

  52. Gertners, U. and Teteris, J., Opt. Mater., 2010, vol. 32, pp. 807–810.

    Article  Google Scholar 

  53. Lu, C., Recht, D., and Arnold, C., Phys. Rev. Lett., 2013, vol. 111, p. 105503.

    Article  Google Scholar 

  54. Kovalskiy, A., Cech, J., Tan, C.L., Heffner, W.R., Miller, E., Waits, C.M., Dubey, M., Churaman, W., Vlcek, M. and Jain, H., Proc. SPIE, 2009, vol. 7273, p. 72734A1.

    Article  Google Scholar 

  55. Kovalskiy, A., Cech, J., Vlcek, M., Waits, Ch.M., et al., J. Micro/Nanolithogr., MEMS, MOEMS, 2009, vol. 8, no. 4, p. 043012.

    Article  Google Scholar 

  56. Nordman, N. and Salminen, O., Solid State Commun., 1996, vol. 100, p. 241.

    Article  Google Scholar 

  57. Nordman, O., Nordman, N. and Peyghambarian, N., J. Appl. Phys., 1998, vol. 84, p. 6055.

    Article  Google Scholar 

  58. Tanaka, K. Appl. Phys. Lett. 1997, vol. 70, p. 261.

    Article  Google Scholar 

  59. Kovalskiy, A., Neilson, J.R., Miller, A.C., Miller, F.C., et al., Thin Solid Films, 2008, vol. 516, p. 7511.

    Article  Google Scholar 

  60. Hoffman, G.B., Zhou, W., Sooryakumar, R., Boolchand, P., and Reano, R.M., J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom., 2009, vol. 27, p. 2737.

    Article  Google Scholar 

  61. Takats, V., Miller, F., Jain, H., Cserhati, C. and Kokenyesi, S., Phys. Status Solidi C, 2009, vol. 6, p. S83.

  62. Cserhati, C., Charnovych, S., Lytvyn, P.M., Trunov, M., et al., Mater. Lett., 2012, vol. 85, p. 113.

    Article  Google Scholar 

  63. Trunov, M.L., Cserhati, C., Lytvyn, P.M., Kaganovskii, Yu., and Kokenyesi, S., J. Phys. D: Appl. Phys., 2013, vol. 46, pp. 245–303.

    Article  Google Scholar 

  64. Stronski, A., Achimova, E., Paiuk, O., Meshalkin, A., et al., Nanoscale Res. Lett., 2016, vol. 39, no. 11, pp. 1–7.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Achimova.

Additional information

The article is published in the original.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Achimova, E. Direct surface relief formation in nanomultilayers based on chalcogenide glasses: A review. Surf. Engin. Appl.Electrochem. 52, 456–468 (2016). https://doi.org/10.3103/S1068375516050021

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375516050021

Keywords

Navigation