Skip to main content
Log in

Adsorption of ionic surfactants on water/air interface: One more transformation of the Gibbs equation

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The adsorption of ionic surfactants on the water/air or water/hydrocarbon interface is considered. One form of the well-known Gibbs equation takes into account the surface excess of the amphiphilic ion in the compact layer, or monolayer, Γ m2 (2D adsorption), and the differential of the electrical potential of this layer. This expression is modified using some simplifying assumptions. The dependence of the surface tension, σ, on the activity of the amphiphilic ion, a 2, degree of gegen-ions binding in the compact layer, β, and Γ m2 is transformed into the following relationship: \(- \frac{{d\sigma }} {{RTd\ln a_2 }} = \Gamma _2^m \left\{ {2 - (1 - \beta )\frac{{d\ln \Gamma _2^m }} {{d\ln a_2 }}\left[ {\frac{1} {{\left[ {1 - \left( {\Gamma _2^m /\Gamma _2^{m\infty } } \right)} \right]^{1 + t} }} - \frac{{2b}} {{RT}}\Gamma _2^m } \right]} \right\}.\) Here Γ m2 denotes the Γ m2 value at complete filling of the adlayer, t = −1, 0, or +1 for the two-phase model of partition, for immobile or mobile monolayer respectively, b is the cohesion constant; both the long-tailed ion and the gegen-ion are single-charged. The usefulness of the proposed equation is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Davies, J.T. and Rideal, E.K., Interfacial Phenomena, N.Y.-London: Academic Press, 1961, p. 480.

    Google Scholar 

  2. Shinoda, K., Nakagawa, T., Tamamushi, B.-i., and Isemura, T., Colloidal Surfactants, New York and London: Academic Press, 1963, p. 319.

    Google Scholar 

  3. Adamson, A.W., Physical Chemistry of Surfaces (Russian translation), Moscow: Mir, 1979.

    Google Scholar 

  4. Jaycock, M.J. and Parfitt, G.D., Chemistry of Interfaces (Russian translation), Moscow: Mir, 1984.

    Google Scholar 

  5. Chattoraj, D.K. and Birdi, K.S., Adsorption and the Gibbs Surface Excess, N.Y.-London: Plenum Press, 1984, p. 471.

    Book  Google Scholar 

  6. Rusanov, A.I., Micellization in Surfactant Solutions, Reading: Harwood Academic Publishes, 1997, p. 326.

    Google Scholar 

  7. Lyklema, J., Fundamentals of Interface and Colloid Science, vol. III: Liquid-Fluid Interfaces, San Diego-London: Academic Press, 2000, p. 805.

    Google Scholar 

  8. Kralchevsky, P.A., Danov, K.D., and Denkov, N.D., Chemical physics of colloid systems and interfaces, in Handbook of Surface and Colloid Chemistry, 2009, ch. 7, pp. 197–377.

    Google Scholar 

  9. Poberezhnyi, V.V., Sotskova, T.Z., and Kulskiy, L.A., Electrostatic interactions in the ionic surfactant adsorption theory, Chemistry and Technology of Water (in Russian), 1996, vol. 18, pp. 570–591.

    Google Scholar 

  10. Lu, J.R., Thomas, R.K., and Penfold, J., Surfactant layers at the air/water interface: structure and composition, Adv. Coll. Int. Sci., 2000, vol. 84, pp. 143–304.

    Article  Google Scholar 

  11. Prosser, A.J. and Franses, E.I., Adsorption and surface tension of ionic surfactants at the air-water interface: review and evaluation of equilibrium models, Coll. Surf., Ser. A, 2001, vol. 178, pp. 1–40.

    Article  Google Scholar 

  12. Fainerman, V.B. and Vollhardt, D., Equilibrium and dynamics of 2D aggregating mixed monolayers consisting of soluble and insoluble amphiphiles, in Studies in Interface Science, Oxford: Elsevier, 2002, vol. 16, ch. 3, pp. 105–160.

    Article  Google Scholar 

  13. Fainerman, V.B. and Lucassen-Reynders, E.H., Adsorption of single and mixed ionic surfactants at fluid interfaces, Adv. Coll. Int. Sci., 2002, vol. 96, pp. 295–323.

    Article  Google Scholar 

  14. Gibbs, J.W., Thermodynamic Works (Russian translation), ed. V.K. Semenchenko, Moscow-Leningrad: Gos. Izdat. Tekhn.-Theoret. Lit., 1950.

  15. Beattie, J.K. and Djerdjev, A.M., The Pristine oil/water interface: surfactant-free hydroxide-charged emulsions, Angew. Chem. Int. Ed., 2004, vol. 43, pp. 3568–3571.

    Article  Google Scholar 

  16. Usui, S. and Healy, T.W., Zeta potential of insoluble monolayer of long-chain alcohol at the air-aqueous solution interface, J. Coll. Int. Sci., 2001, vol. 240, pp. 127–132, Ch. 1, pp. 1–71.

    Article  Google Scholar 

  17. Mchedlov-Petrossyan, N.O., Vodolazkaya, N.A., and Kamneva, N.N., Acid-base equilibrium in aqueous micellar solutions of surfactants, in Micelles: Structural Biochemistry, Formation and Functions and Usage, N.Y.: Nova Publishers, 2013, p. 352, Ch. 1, pp. 1–71.

    Google Scholar 

  18. Brooks, J.H. and Pethica, B.A., Comparison of spread monolayers and adsorbed monolayers at an n-heptane/aqueous sodium chloride interface, Trans. Faraday Soc., 1965, vol. 61, pp. 571–576.

    Article  Google Scholar 

  19. Rusanov, A.I. and Fainerman, V.B., Surface tension of surfactant solutions and characterization of micelles (in Russian), Doklady AN USSR, 1989, vol. 308, pp. 651–654.

    Google Scholar 

  20. Huang, X., Wang, Y., Dong, C., et al., Structure of adsorbed layers of nitrophenoxy-tailed quaternary ammonium surfactants at the air/water interface studied by neutron reflection, J. Coll. Int. Sci., 2008, vol. 325, pp. 114–121.

    Article  Google Scholar 

  21. Eastoe, J., Nave, S., Downer, A., et al., Adsorption of ionic surfactants at the air-solution interface, Langmuir, 2000, vol. 16, pp. 4511–4518.

    Article  Google Scholar 

  22. Bell, G.R., Li, Z.X., Bain, C.D., et al., Monolayers of hexadecyltrimethylammonium p-tosylate at the air-water interface, I. Sum-frequency spectroscopy, J. Phys. Chem., Ser. B, 1998, vol. 102, pp. 9461–9672.

    Article  Google Scholar 

  23. Simon-Kutscher, J., Gericke, A., and Hühnerfuss, H., Effect of bivalent Ba, Cu, Ni, and Zn cations on the structure of octadecanoic acid monolayers at the air-water interface as determined by external infrared reflection/3-absorption spectroscopy, Langmuir, 1996, vol. 12, pp. 1027–1034.

    Article  Google Scholar 

  24. Bae, S., Haage, K., Wantke, K., and Motschmann, H., On the factor in Gibbs equation for ionic surfactants, J. Phys. Chem., Ser. B, 1999, vol. 103, pp. 1045–1050.

    Article  Google Scholar 

  25. Hall, D.G., Pethica, B.A., and Shinoda, K., The interpretation of surface tension data for solutions of ionic surfactants in the presence of electrolyte, Bull. Chem. Soc. Jpn., 1975, vol. 48, pp. 324–326.

    Article  Google Scholar 

  26. Hall, D.G., The effect of electrolyte on ionic surfactant adsorption, Coll. Surf., Ser. A, 1994, vol. 90, pp. 285–288.

    Article  Google Scholar 

  27. Warszyński, P., Barzyk, W., Lunkenheimer, K., and Fruhner, H., Surface tension and surface potential of Na n-dodecyl sulfate at the air-solution interface: model and experiment, J. Phys. Chem., Ser. B, 1998, vol. 102, pp. 10948–10957.

    Article  Google Scholar 

  28. Davies, J.T., The distribution of ions under a charged monolayer, and surface equation of state for charged films, Proc. Roy Soc. London, Ser. A, 1951, vol. 208, pp. 224–247.

    Article  Google Scholar 

  29. Sotskova, T.Z., Poberezhnij, V.Ya., Bazhenov, Yu.F., and Kul’sky, L.A., Investigation of potentials of the air-solution of ionogen surfactant interface (in Russian), Kolloidny Zhurn., 1983, vol. 45, pp. 108–113.

    Google Scholar 

  30. Haydon, D.A., A study of the relation between electrokinetic potential and surface charge density, Proc. Roy Soc. London, Ser. A, 1960, vol. 258, pp. 319–328.

    Article  Google Scholar 

  31. Payens, Th.A.J., Ionized monolayers, Philips Res. Rep., 1955, vol. 10, pp. 425–481.

    Google Scholar 

  32. Cockbain, E.G., The adsorption of sodium dodecyl sulphate at the oil-water interface and application of the Gibbs equation, Trans. Faraday Soc., 1954, vol. 50, pp. 874–881.

    Article  Google Scholar 

  33. Haydon, D.A. and Taylor, F.H., On adsorption at the oil/water interface and the calculation of electrical potentials in the aqueous surface phase, I: Neutral molecules and a simplified treatment of ions, Philos. Trans. Royal Soc., Ser. A, 1960, vol. 252, pp. 225–248.

    Article  Google Scholar 

  34. Bell, G.M., Levine, S., and Pethica, B.A., The surface pressure of ionized monolayers, Trans. Faraday Soc., 1962, vol. 58, pp. 904–917.

    Article  Google Scholar 

  35. Payens, T.A.J., The surface pressure of ionized monolayers: a comment, J. Coll. Int. Sci., 1970, vol. 33, pp. 480–481.

    Article  Google Scholar 

  36. Bell, G.M., Levine, S., Pethica, B.A., and Stephens, D., The surface pressure of ionized monolayers: a reply to payens, J. Coll. Int. Sci., 1970, vol. 33, pp. 482–483.

    Article  Google Scholar 

  37. Hachisu, S., Equation of state of ionized monolayers, J. Coll. Int. Sci., 1970, vol. 33, pp. 445–454.

    Article  Google Scholar 

  38. Middleton, S.R., Pallas, N.R., Mingins, J., and Pethica, B.A., Thermodynamics of ionized monolayers: surface manometry on very low density spread mono-layers of sodium octadecyl sulfate at the air/water interface and analysis of ionic double layer contributions to the isotherms, J. Phys. Chem., Ser. C, 2001, vol. 115, pp. 8056–8063.

    Article  Google Scholar 

  39. Huibers, P.D.T., Quantum-chemical calculations of the charge distribution in ionic surfactants, Langmuir, 1999, vol. 15, pp. 7546–7550.

    Article  Google Scholar 

  40. Yan, P. and Xiao, J.-X., Polymer-surfactant interaction: differences between alkyl sulfate and alkyl sulfonate, Coll. Surf., Ser. A, 2004, vol. 244, pp. 39–44.

    Article  Google Scholar 

  41. James, R.O., Application of site binding or surface complexation models to the estimation double layer free energy and of the surface pressure of ionizable and ionized surfaces, Coll. Surf., 1981, vol. 2, pp. 201–220.

    Article  Google Scholar 

  42. Borwankar, R.P. and Wasan, D.T., Equilibrium and dynamics of adsorption of surfactants fluid-fluid interfaces, Chem. Eng. Sci., 1988, vol. 43, pp. 1323–1337.

    Article  Google Scholar 

  43. Kalinin, V.V. and Radke, C.J., An ion-binding model for ionic surfactant adsorption at aqueous-fluid interfaces, Coll. Surf., Ser A, 1996, vol. 114, pp. 337–350.

    Article  Google Scholar 

  44. Datwani, S.S. and Stebe, K.J., Monolayer penetration by a charged amphiphile: equilibrium and dynamics, Coll. Surf., Ser. A, 2001, voll. 192, pp. 109–129.

    Article  Google Scholar 

  45. Kolev, V.L., Danov, K.D., Kralchevsky, P.A., et al., Comparison of the vand der Waals and Frumkin adsorption isotherms for sodium dodecyl sulfate at various sal concentrations, Langmuir, 2002, vol. 18, pp. 9106–9109.

    Article  Google Scholar 

  46. Danov, K.D. and Kralchevsky, P.A., The Standard free energy of surfactant adsorption at air/water and oil/water interfaces: theoretical vs. empirical approaches, Coll. J., 2012, vol. 74, pp. 172–185.

    Article  Google Scholar 

  47. Prosser, A.J. and Franses, E.I., New thermodynamic/electrostatic models of adsorption and tension equilibria of aqueous ionic surfactant mixtures: application to sodium dodecyl sulfate/sodium dodecyl sulfonate systems, J. Coll. Int. Sci., 2003, vol. 263, pp. 606–615.

    Article  Google Scholar 

  48. Davies, J.T., Catalysis and reaction kinetics at liquid interfaces, Adv. Catal., 1954, vol. 6, pp. 1–65.

    Article  Google Scholar 

  49. Markin, V.S., Volkova-Gugeshashvili, M.I., and Volkov, A.G., Adsorption at liquid interfaces: the generalized Langmuir isotherm and interfacial structure, J. Phys. Chem., Ser. B, 2006, vol. 110, pp. 11415–11420.

    Article  Google Scholar 

  50. Langmuir, I., The distribution and orientation of molecules, Third Colloid Symp. Monogr., 1925, pp. 48–75.

    Google Scholar 

  51. Frumkin, A., Die Kapillarkurve der höheren Fettsäuren und die Zustandsgleichung der Oberflächenschicht, Z. phys. Chem., 1925, vol. 116, pp. 466–484.

    Google Scholar 

  52. Lu, J.R., Simister, E.A., Thomas, R.K., and Penfold, J., Structure of the surface of a surfactant solution above the critical micelle concentration, J. Phys. Chem., 1993, vol. 97, pp. 13907–13913.

    Article  Google Scholar 

  53. Gilányi, T., Varga, I., and Mészáros, R., Specific counterion effect on the adsorption of alkali decyl sulfate surfactants at air/solution interface, Phys. Chem. Chem. Phys., 2004, vol. 6, pp. 4338–4346.

    Article  Google Scholar 

  54. Warszyn-ski, P., Lunkenheimer, K., and Czichocki, G., Effect of counterion on the adsorption of ionic surfactants at fluid-fluid interfaces, Langmuir, 2002, vol. 18, pp. 2506–2514.

    Article  Google Scholar 

  55. Aleiner, G.S. and Us’yarov, O.G., Electrical double layer at ionic surfactant solution-air interface, Coll. J., 2010, vol. 72, pp. 731–736.

    Article  Google Scholar 

  56. Su, T.J., Lu, J.R., Thomas, R.K., and Penfold, J., Neutron reflection from counterions at the surface of a soluble surfactant solution, J. Phys. Chem., Ser. B, 1997, vol. 101, pp. 937–943.

    Article  Google Scholar 

  57. Su, T.J., Thomas, R.K., and Penfold, J., Neutron reflection from counterions at the surface formed by a charged insoluble monolayer, Langmuir, 1997, vol. 13, pp. 2133–2142.

    Article  Google Scholar 

  58. Mchedlov-Petrossyan, N.O., Protolytic equilibrium in lyophilic nano-sized dispersions: differentiating influence of the pseudophase and salt effects, Pure Appl. Chem., 2008, vol. 80, pp. 1459–1510.

    Google Scholar 

  59. Salley, D.J., Weith, A.J., Argyle, A.A., and Dixon, J.K., Measurements of the adsorption of surface-active agents at a solution/air interface by a radiotracer method, Proc. Roy Soc. London, Ser. A, 1950, vol. 203, pp. 42–55.

    Article  Google Scholar 

  60. Flengas, S.N. and Rideal, E., A study of adsorption at the surface of dilute soap solutions by means of radioactive tracers, Trans. Faraday Soc., 1959, vol. 55, pp. 339–349.

    Article  Google Scholar 

  61. Tajima, K., Muramatsu, M., and Sasaki, T., Radiotracer studies on adsorption of surface active substance at aqueous surface, I: Accurate measurements of adsorption of tritiated sodium dodecylsulfate, Bull. Chem. Soc. Jpn., 1970, vol. 43, pp. 1991–1998.

    Article  Google Scholar 

  62. Tajima, K., Radiotracer studies on adsorption of surface active substance at aqueous surface, III: The effect of salts on the adsorption of sodium dodecylsulfate, Bull. Chem. Soc. Jpn., 1971, vol. 44, pp. 1767–1771.

    Article  Google Scholar 

  63. Cross, A.W. and Jayson, G.G., The effect of small quantities of calcium on the adsorption of sodium dodecyl sulfate and calcium at the gas-liquid interface, J. Coll. Int. Sci., 1994, vol. 162, pp. 45–51.

    Article  Google Scholar 

  64. Poberezhnij, V.Ya., Sotskova, T.Z., and Kul’sky, L.A., Adsorption of an ionogen surfactant and electrical surface properties of the liquid-gas interface (in Russian), Kolloidny Zhurn., 1982, vol. 44, pp. 41–46.

    Google Scholar 

  65. Poberezhnij, V.Ya. and Kul’sky, L.A., Electrosurface properties of the ionogen surfactant solution-air interface (in Russian), Kolloidny Zhurn., 1984, vol. 46, pp. 735–742.

    Google Scholar 

  66. Pethica, B.A., Are electrostatic potentials between regions of different chemical composition measurable? The Gibbs-Guggenheim principle reconsidered, extended and its consequences revisited, Phys. Chem. Chem. Phys., 2007, vol. 9, pp. 6243–6262.

    Article  Google Scholar 

  67. Cheng, T., Chen, Q., Li, F., and Sun, H., Classic force field for predicting surface tension and interfacial properties of sodium dodecyl sulfate, J. Phys. Chem., Ser. B, 2010, vol. 114, pp. 13736–13744.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. O. Mchedlov-Petrossyan.

Additional information

The article is published in the original.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mchedlov-Petrossyan, N.O. Adsorption of ionic surfactants on water/air interface: One more transformation of the Gibbs equation. Surf. Engin. Appl.Electrochem. 50, 173–182 (2014). https://doi.org/10.3103/S1068375514020100

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375514020100

Keywords

Navigation