Skip to main content
Log in

Energy transformation in water and oxygen-containing electrolytes

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The conductivity of distilled water and dilute electrolyte solutions in the presence and absence of dissolved oxygen is studied. It is found that the circuit can be implemented with equal probability as a capacitive circuit with physically different current carriers and as an inductive circuit in water and dilute aqueous solutions of oxygen-containing electrolytes. The occurrence of an inductive resistance is caused by the presence of particles with intrinsic magnetic moment, i.e., reactive oxygen species. The frequency ranges of possible pulse energy transformation in an electrochemical system that contains oxygenated water are shown. In the absence of oxygen, this circuit is not implemented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bard, A.J. and Faulkner, L.R., Electrochemical Methods: Fundamentals and Applications, New York: Wiley, 2001.

    Google Scholar 

  2. Grasso, F., Musumeci, F., and Triglia, A., Impedance Spectroscopy of Pure Water, Il Nuovo Cimento, 1990, vol. 12, pp. 1117–1131.

    Article  Google Scholar 

  3. Light, T.S., Licht, S., Bevilacqua, A.C., and Morashc, K.R., The Fundamental Conductivity and Resistivity of Water, Electrochem. Solid-State Lett., 2005, vol. 8, no. 1, pp. E16–E19.

    Article  Google Scholar 

  4. Bresme, F., Lervik, A., Bedeaux, D., and Kjelstrup, S., Water Polarization under Thermal Gradients, Phys. Rev. Lett., 2008, vol. 101, no. 2, p. 020602.

    Article  Google Scholar 

  5. Zwier, T.S., The Structure of Protonated Water Clusters, Science, 2004, vol. 304, pp. 1119–1121.

    Article  Google Scholar 

  6. Miyazaki, M., Fujii, A., Ebata, T., and Mikami, N., Infrared Spectroscopic Evidence for Protonated Water Clusters Forming Nanoscale Cages, Science, 2004, vol. 304, pp. 1134–1136.

    Article  Google Scholar 

  7. Sedlák, M., Large-Scale Supramolecular Structure in Solutions of Low Molar Mass Compounds and Mixtures of Liquids: I. Light Scattering Characterization, J. Phys. Chem. B, 2006, vol. 110, no. 9, pp. 4329–4339.

    Article  Google Scholar 

  8. Sedlák, M., Large-Scale Supramolecular Structure in Solutions of Low Molar Mass Compounds and Mixtures of Liquids: II. Kinetics of the Formation and Long-Time Stability, J. Phys. Chem. B, 2006, vol. 110, no. 9, pp. 4339–4347.

    Article  Google Scholar 

  9. Syroeshkin, A.V., Smirnov, A.N., Goncharuk, V.V., et al., Water as a Heterogeneous Structure, Issledovano v Rossii. http://zhurnal.ape.relarn.ru/articles/2006/088.pdf

  10. Goncharuk, V.V., Smirnov, V.N., Syroyeshkin, A.V., and Malyarenko, V.V., Clusters and Gigantic Heterophase Water Clusters, J. Water Chem. Technol., 2007, vol. 29, pp. 3–17.

    Google Scholar 

  11. Goncharuk, V.V., Orehova, E.A., and Malyarenko, V.V., Clusters and Gigantic Heterophase Water Clusters, J. Water Chem. Technol., 2008, vol. 30, pp. 136–152.

    Google Scholar 

  12. Demangeat, J-L., NMR Water Proton Relaxation in Unheated and Heated Ultrahigh Aqueous Dilutions of Histamine: Evidence for an Air-Dependent Supramolecular Organization of Water, J. Mol. Liq., 2009, vol. 144, pp. 32–41.

    Google Scholar 

  13. Domrachev, G.A., Selivanovskii, D.A., Domracheva, E.A., et al., The Role of Neutral Defects in the Structure of Liquid Water, Zh. Strukt. Khim, 2004, vol. 45, no. 4, pp. 670–677.

    Google Scholar 

  14. Sediki, A., Lebsir, F., Martiny, L., Dauchez, M., and Krallafa, A., Ab Initio Investigation of the Topology and Properties of Three-Dimensional Clusters of Water (H2O)n, Food Chem., 2008, vol. 106, pp. 1476–1484.

    Article  Google Scholar 

  15. Galashev, A.E., Chukanov, V.N., and Galasheva, O.A., Dielectric Characteristics of O2(H2O)i and (O2)2(H2O)i Clusters: Computer-Aided Experiment, Colloid J., 2006, vol. 68, no. 2, pp. 131–136.

    Article  Google Scholar 

  16. Pershina, K.D. and Kazdobin, K.A., Conductivity of Water Media as an Alternative of Electronic and Ionic Transfer, J. Water Chem. Technol., 2008, vol. 30, no. 6, pp. 358–367.

    Article  Google Scholar 

  17. Knowles, G. and Lowden, G.F., Methods for Detecting the End-Point in the Titration of Iodine with Thiosulphate, Analyst, 1953, vol. 78, no. 924, pp. 159–164.

    Article  Google Scholar 

  18. Spravochnik po elektrokhimii (Handbook of Electrochemistry), Sukhotin, A.M., Ed., Leningrad: Khimiya, 1981.

    Google Scholar 

  19. Grafov, B.M. and Ukshe, E.A., Elektrokhimicheskie tsepi peremennogo toka (Alternating-Current Electrochemical Circuits), Moscow: Nauka, 1973.

    Google Scholar 

  20. Frish, S.E. and Timoreva, A.V., Kurs obshchei fiziki (A Course in General Physics), Moscow: Fizmatgiz, 1962, vol. 2, p. 516.

    Google Scholar 

  21. Ho, J.C.K., Tremiliosi-Filho, G., Simpraga, R., and Conway, B.E., Structure Influence on Electrocatalysis and Adsorption of Intermediates in the Anodic O2 Evolution at Dimorphic α- and β-PbO2, J. Electroanal. Chem., 1994, vol. 366, 147–162.

    Article  Google Scholar 

  22. Bisquert, J., Randriamahazaka, H., and Garcia-Belmonte, G., Inductive Behavior by Charge-Transfer and Relaxation in Solid-State Electrochemistry, Electrochim. Acta, 2005, vol. 51, pp. 627–640.

    Article  Google Scholar 

  23. Francoa, D.V., Da Silva, L.M., Wilson, F.J., and Boodts, J.F.C., Influence of the Electrolyte Composition on the Kinetics of the Oxygen Evolution Reaction and Ozone Production Processes, J. Braz. Chem. Soc., 2006, vol. 17, no. 4, pp. 746–757.

    Google Scholar 

  24. Alves, V.A., Da Silva, L.A., and Boodts, J.F.C., Surface Characterization of IrO2/TiO2/CeO2 Oxide Electrodes and Faradaic Impedance Investigation of the Oxygen Evolution Reaction from Alkaline Solution, Electrochim. Acta, 1998, vol. 44, pp. 1525–1534.

    Article  Google Scholar 

  25. Da Silva, L.M., De Faria, L.A., and Boodts, J.F.C., Electrochemical Impedance Spectroscopic (EIS) Investigation of the Deactivation Mechanism, Surface and Electrocatalytic Properties of Ti/RuO2(x) + Co3O4(1 − x) Electrodes, J. Electroanal. Chem., 2002, vol. 532, pp. 141–150.

    Article  Google Scholar 

  26. Qian, S.Y., Conway, B.E., and Jerkiewicz, G., Comparative Effects of Adsorbed S-Species on H Sorption into Pd from UPD and OPD H: a Kinetic Analysis, Int. J. Hydrogen Energy, 2000, vol. 25, pp. 539–550.

    Article  Google Scholar 

  27. Macdonald, J.R., Impedance Spectroscopy, New York: Wiley, 1987.

    Google Scholar 

  28. Bratko, D., Daub, C.D., and Luzar, A., Water-Mediated Ordering of Nanoparticles in an Electric Field, Faraday Discuss., 2009, vol. 141, pp. 31–39.

    Article  Google Scholar 

  29. Skúlason, E., Karlberg, G.S., Rossmeisl, J., et al., Density Functional Theory Calculations for the Hydrogen Evolution Reaction in an Electrochemical Double Layer on the Pt(111) Electrode, Phys. Chem. Chem. Phys., 2007, vol. 9, pp. 3241–3250.

    Article  Google Scholar 

  30. Pleskov, Yu.V., Synthetic Diamond in Electrochemistry, Usp. Khim., 1999, vol. 68, no. 5, pp. 416–429.

    Google Scholar 

  31. Kompan, M.E., Kuznetsov, V.P., and Malyshkin, V.G., Nonlinear Impedance of Solid-State Energy-Storage Ionisters, Tech. Phys., 2010, vol. 55, no. 5, pp. 692–698.

    Article  Google Scholar 

  32. Elkin, V.V., Marshakov, A.I., Rybkina, A.A., and Maleeva, M.A., Interpretation of the Impedance Comprising Negative Capacitance and Constant Phase Elements on Iron Electrode in Weakly Acidic Media, Russ. J. Electrochem., 2011, vol. 47, no. 2, pp. 136–146.

    Article  Google Scholar 

  33. Poklonski, N.A., Gorbachuk, N.I., Shpakovski, S.V., and Wieck, A., Equivalent Circuit of Silicon Diodes Subjected to High-Fluence Electron Irradiation, Tech. Phys., 2010, vol. 55, no. 10, pp. 1463–1471.

    Article  Google Scholar 

  34. Inductance in Electrochemistry. http://www.consul-trsr.com/resources/eis/index.htm.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. D. Pershina.

Additional information

Original Russian Text © K.D. Pershina, V.V. Kokhanenko, L.N. Masliuk, K.A. Kazdobin, 2012, published in Elektronnaya Obrabotka Materialov, 2012, No. 1, pp. 106–113.

About this article

Cite this article

Pershina, K.D., Kokhanenko, V.V., Masliuk, L.N. et al. Energy transformation in water and oxygen-containing electrolytes. Surf. Engin. Appl.Electrochem. 48, 90–96 (2012). https://doi.org/10.3103/S1068375512010127

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375512010127

Keywords

Navigation