Skip to main content
Log in

Squalls and Tornadoes over the European Territory of Russia on May 15, 2021: Diagnosis and Modeling

  • Published:
Russian Meteorology and Hydrology Aims and scope Submit manuscript

Abstract

Peculiarities were studied of formation of severe convective events, including a long-lived squall and several tornadoes observed over the European territory of Russia on May 15, 2021. The event became one of the most destructive in the forest zone of the region over the past 35 years, with the total area of stand-replacing windthrows exceeding 152 km2. The event was formed at a relatively low moisture content, but other conditions were exceptionally favorable for the formation of strong squalls and tornadoes characterized by a combination of high convective instability and strong wind shear. This resulted in the formation of several supercells and a mesoscale convective complex. The characteristics of cloud systems that caused squalls and tornadoes were analyzed based on satellite and radar data. Several characteristic signatures were identified at the cloud top, including long-lived overshooting tops that coincide with the area of destruction. The maximum reflectivity in some clusters exceeded 60 dBZ, the presence of a mesocyclone was noted in the radial velocity field during the tornado generation. Numerical experiments were performed to reproduce the event using the WRF regional atmospheric model with different initial conditions, which, however, cannot be considered successful.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. A. A. Alekseeva, E. V. Vasil’ev, and V. M. Bukharov, "Forecast of Severe Squalls in the European Part of Russia and Their Identification by Doppler Weather Radars," Trudy Gidromettsentra Rossii, No. 363 (2017) [in Russian].

  2. S. A. Bartalev, V. A. Egorov, V. O. Zharko, E. A. Lupyan, D. E. Plotnikov, S. A. Khvostikov, and N. V. Shabanov, Satellite Mapping of Vegetation Cover of Russia (IKI RAN, Moscow, 2016) [in Russian].

    Google Scholar 

  3. O. N. Bulygina, V. M. Veselov, V. N. Razuvaev, and T. M. Aleksandrova, Description of the Dataset of Observational Data on Major Meteorological Parameters from Russian Weather Stations, Database State Registration Certificate No. 2014620549 (2014) [in Russian].

  4. E. V. Vasil’ev, A. A. Alekseeva, and B. E. Peskov, "Conditions for Formation and Short-range Forecasting of Severe Squalls," Meteorol. Gidrol., No. 1 (2009) [Russ. Meteorol. Hydrol., No. 1, 34 (2009)].

    Article  Google Scholar 

  5. N. F. Vel’tishchev and V. M. Stepanenko, Mesometeorological Processes (Moscow, 2006) [in Russian].

  6. Damage from the May Hurricane was Calculated in the Ivanovo Region, https://regnum.ru/news/economy/3282230.html (Accessed June 25, 2021).

  7. Damage from the Hurricane was Assessed in the Kostroma Region, https://regnum.ru/news/accidents/3286417.html (Accessed June 25, 2021).

  8. T. G. Dmitrieva and B. E. Peskov, "Synoptic Conditions, Nowcasting, and Numerical Prediction of Severe Squalls and Tornados in Bashkortostan on June 1, 2007 and August 29, 2014," Meteorol. Gidrol., No. 10 (2016) [Russ. Meteorol. Hydrol., No. 10, 41 (2016)].

    Article  Google Scholar 

  9. T. G. Dmitrieva and B. E. Peskov, "Numerical Forecast with the Mesosynoptic Specification of Extremely Severe Squalls in the European Part of Russia (Case Study for June 13 and July 29, 2010)," Meteorol. Gidrol., No. 2 (2013) [Russ. Meteorol. Hydrol., No. 2, 38 (2013)].

    Article  Google Scholar 

  10. V. Dyadyuchenko, Yu. Pavlyukov, and I. Vylegzhanin, "Doppler Radars in Russia," Nauka v Rossii, No. 1 (2014).

  11. N. A. Kalinin, A. N. Shikhov, A. V. Bykov, A. A. Pomortseva, R. K. Abdullin, and I. O. Azhigov, "Formation Conditions and Short-term Forecast of Convective Hazardous Weather Events in the Ural Region in the Warm Period of 2020," Optika Atmosfery i Okeana, No. 1, 34 (2021) [Atmos. Ocean. Opt., 34 (2021)].

    Article  Google Scholar 

  12. N. A. Kalinin, A. N. Shikhov, A. V. Chernokulsky, S. V. Kostarev, and A. V. Bykov, "Environments of Formation of Severe Squalls and Tornadoes Causing Large-scale Windthrows in the Forest Zone of European Russia and the Ural," Meteorol. Gidrol., No. 2 (2021) [Russ. Meteorol. Hydrol., No. 2, 46 (2021)].

    Article  Google Scholar 

  13. A. A. Korshunov, V. M. Shaimardanov, M. Z. Shaimardanov, and S. I. Shamin, "Frequency of Hydrometeorological Hazards Which Caused Socioeconomic Damage in 1998–2017," Meteorol. Gidrol., No. 11 (2019) [in Russian].

  14. M. A. Novitskii, Yu. B. Pavlyukov, B. Ya. Shmerlin, S. V. Makhnorylova, N. I. Serebryannik, S. A. Petrichenko, L. A. Tereb, and O. V. Kalmykova, "The Tornado in Bashkortostan: The Potential of Analyzing and Forecasting Tornado-risk Conditions," Meteorol. Gidrol., No. 10 (2016) [Russ. Meteorol. Hydrol., No. 10, 41 (2016)].

    Article  Google Scholar 

  15. Products of the European Center of Planeta Research Center for Space Hydrometeorology, http://planet.iitp.ru/index.php?lang=ru&page_type=oper_prod&page=oper_list (Accessed June 25, 2021).

  16. The Hurricane in Moscow on May 29, 2017, https://ria.ru/20180529/1521230239.html (Accessed June 25, 2021).

  17. Nizhny Novgorod Region Forest Health Center, https://nizhnovgorod.rcfh.ru/news/28145.html (Accessed June 25, 2021).

  18. A. V. Chernokulsky, M. V. Kurgansky, D. I. Zakharchenko, and I. I. Mokhov, "Genesis Environments and Characteristics of the Severe Tornado in the South Urals on August 29, 2014," Meteorol. Gidrol., No. 12 (2015) [Russ. Meteorol. Hydrol., No. 12, 40 (2015)].

    Article  Google Scholar 

  19. A. V. Chernokulsky, M. V. Kurgansky, I. I. Mokhov, A. N. Shikhov, I. O. Azhigov, E. V. Selezneva, D. I. Zakharchenko, B. Antonescu, and T. Kuhne, "Tornadoes in the Russian Regions," Meteorol. Gidrol., No. 2 (2021) [Russ. Meteorol. Hydrol., No. 2, 46 (2021)].

    Article  Google Scholar 

  20. A. N. Shikhov and A. V. Bykov, "Studying Two Cases of Severe Tornadoes in the Cis-Ural Region," Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa, No. 3 (2015) [in Russian].

  21. W. S. Ashley and T. L. Mote, "Derecho Hazards in the United States," Bull. Amer. Meteorol. Soc., No. 11, 86 (2005).

    Article  Google Scholar 

  22. J. Bech, M. Gaya, M. Aran, F. Figuerola, J. Amaro, and J. Arus, "Tornado Damage Analysis of a Forest Area Using Site Survey Observations, Radar Data and a Simple Analytical Vortex Model," Atmos. Res., No. 1–3, 93 (2009).

    Article  Google Scholar 

  23. K. M. Bedka, "Overshooting Cloud Top Detections Using MSG SEVIRI Infrared Brightness Temperatures and Their Relationship to Severe Weather over Europe," Atmos. Res., No. 2, 99 (2011).

    Article  Google Scholar 

  24. H. E. Brooks, C. A. Doswell III, X. Zhang, A. Chernokulsky, E. Tochimoto, B. Hanstrum, E. Nascimento, D. Sills, B. Antonescu, and B. Barrett, "A Century of Progress in Severe Convective Storm Research and Forecasting," Meteorol. Monogr., 59 (2019).

  25. A. V. Chernokulsky, M. V. Kurgansky, and I. I. Mokhov, "Analysis of Changes in Tornadogenesis Conditions over Northern Eurasia Based on a Simple Index of Atmospheric Convective Instability," Dokl. Earth Sci., No. 2, 477 (2017).

  26. A. Chernokulsky, M. Kurgansky, I. Mokhov, A. Shikhov, I. Azhigov, E. Selezneva, D. Zakharchenko, B. Antonescu, and T. Kuhne, "Tornadoes in Northern Eurasia: From the Middle Age to the Information Era," Mon. Wea. Rev., 148 (2020).

    Article  Google Scholar 

  27. A. Chernokulsky, A. Shikhov, A. Bykov, and I. Azhigov, "Satellite-based Study and Numerical Forecasting of Two Tornado Outbreaks in the Ural Region in June 2017," Atmosphere, No. 1146, 11 (2020).

    Article  Google Scholar 

  28. A. Chernokulsky, A. Shikhov, A. P. Bykov, N. Kalinin, M. Kurgansky, B. Sherstyukov, and Yu. I. Yarinich, "Diagnosis and Modelling of Two Destructive Derecho Events in European Russia in the Summer of 2010," Atmos. Res., 267 (2022).

    Article  Google Scholar 

  29. C. A. Doswell and D. M. Schultz, "On the Use of Indices and Parameters in Forecasting Severe Storms," E-J. of Severe Storms Meteorol., No. 3, 1 (2006).

  30. Eumetsat Earth Observation Portal, https://eoportal.eumetsat.int/ (Accessed June 25, 2021).

  31. C. P. Gatzen, A. H. Fink, D. M. Schultz, and J. G. Pintom, "An 18-year Climatology of Derechos in Germany," Nat. Hazards Earth Syst. Sci., No. 5, 20 (2020).

    Article  Google Scholar 

  32. J. Grieser, Convection Parameters, http://www.juergen-grieser.de/CovectionParameters/Convection Parameters.pdf (Accessed June 24, 2021).

  33. P. Groenemeijer, T. Pucik, A. M. Holzer, B. Antonescu, K. Riemann-Campe, D. Schultz, T. Kuhne, B. Feuerstein, H. Brooks, C. Doswell, H. Koppert, and R. Sausen, "Severe Convective Storms in Europe: Ten Years of Research and Education at the European Severe Storms Laboratory," Bull. Amer. Meteorol. Soc., 98 (2017).

    Article  Google Scholar 

  34. H. Hersbach, B. Bell, P. Berrisford, S. Hirahara, A. Horanyi, J. Munoz-Sabater, J. Nicolas, C. Peubey, R. Radu, D. Schepers, A. Simmons, C. Soci, S. Abdalla, X. Abellan, G. Balsamo, P. Bechtold, G. Biavati, J. Bidlot, M. Bonavita, G. Chiara, P. Dahlgren, D. Dee, M. Diamantakis, R. Dragani, J. Flemming, R. Forbes, M. Fuentes, A. Geer, L. Haimberger, S. Healy, R. Hogan, E. Holm, M. Janiskova, S. Keeley, P. Laloyaux, P. Lopez, C. Lupu, G. Radnoti, P. Rosnay, I. Rozum, F. Vamborg, S. Villaume, and J. Thepaut, "The ERA5 Global Reanalysis," Quart. J. Roy. Meteorol. Soc., 146 (2020).

    Article  Google Scholar 

  35. G. Hinrichs, "Tornadoes and Derechos," Amer. Meteorol. J., 5 (1888).

  36. R. H. Johns and W. D. Hirt, "Derechos: Widespread Convectively Induced Windstorms," Wea. Forecast., 2 (1987).

    Article  Google Scholar 

  37. J. S. Kain, S. J. Weiss, D. R. Bright, M. Baldwin, J. Levit, G. Carbin, C. Schwartz, M. Weisman, K. Droegemeier, D. Weber, and K. Thomas, "Some Practical Considerations Regarding Horizontal Resolution in the First Generation of Operational Convection-allowing NWP," Wea. Forecast., No. 5, 23 (2008).

    Article  Google Scholar 

  38. J. Kerkmann, H. J. Lutz, M. Konig, J. Prieto, P. Pylkko, H.-P. Roesli, D. Rosenfeld, J. Schmetz, and V. Zwatz-Meise, MSG Channels Interpretation Guide: Weather, Surface Conditions and Atmospheric Constituents (2006), http://oiswww.eumetsat.org/WEBOPS/msg_interpretation/index.html (Accessed June 25, 2021).

  39. M. Kunz, U. Blahak, J. Handwerker, M. Schmidberger, H. J. Punge, S. Mohr, E. Fluck, and K. Bedka, "The Severe Hailstorm in Southwest Germany on 28 July 2013: Characteristics, Impacts and Meteorological Conditions," Quart. J. Roy. Meteorol. Soc., No. 710, 144 (2018).

    Article  Google Scholar 

  40. A. R. Lupo, A. D. Jensen, I. I. Mokhov, A. Timazhev, T. Eichler, and B. Efe, "Changes in Global Blocking Character in Recent Decades," Atmosphere, No. 2, 10 (2019).

    Article  Google Scholar 

  41. R. A. Maddox, "Mesoscale Convective Complexes," Bull. Amer. Meteorol. Soc., 61 (1980).

  42. S. Mohr, J. Wandel, S. Lenggenhager, and O. Martius, "Relationship between Atmospheric Blocking and Warm-season Thunderstorms over Western and Central Europe," Quart. J. Roy. Meteorol. Soc., 145 (2019).

    Article  Google Scholar 

  43. J. G. Powers, J. B. Klemp, W. C. Skamarock, C. Davis, J. Dudhia, D. Gill, J. Coen, D. Gochis, R. Ahmadov, S. Peckham, G. Grell, J. Michalakes, S. Trahan, S. Benjamin, C. Alexander, G. Dimego, W. Wang, C. Schwartz, G. Romine, Z. Liu, C. Snyder, F. Chen, M. Barlage, W. Yu, and M. Duda, "The Weather Research and Forecasting Model: Overview, System Efforts, and Future Directions," Bull. Amer. Meteorol. Soc., No. 8, 98 (2017).

    Article  Google Scholar 

  44. M. Putsay, A. Simon, I. Szenyan, J. Kerkmann, and G. Horvath, "Case Study of the 20 May 2008 Tornadic Storm in Hungary—Remote Sensing Features and NWP Simulation," Atmos. Res., No. 4, 100 (2011).

    Article  Google Scholar 

  45. K. L. Rasmussen, A. F. Prein, R. M. Rasmussen, K. Ikeda, and C. Liu, "Changes in the Convective Population and Thermodynamic Environments in Convection-permitting Regional Climate Simulations over the United States," Climate Dynamics, 55 (2020).

    Article  Google Scholar 

  46. O. Rodriguez and J. Bech, "Reanalysing Strong-convective Wind Damage Paths Using High-resolution Aerial Images," Nat. Hazards, 104 (2020).

    Article  Google Scholar 

  47. S. Saha, S. Moorthi, H.-L. Pan, X. Wu, J. Wang, S. Nadiga, P. Tripp, R. Kistler, J. Woollen, D. Behringer, H. Liu, D. Stokes, R. Grumbine, G. Gayno, J. Wang, Y.-T. Hou, H.-Y. Chuang, H.-M. H. Juang, J. Sela, M. Iredell, R. Treadon, D. Kleist, P. van Delst, D. Keyser, J. Derber, M. Ek, J. Meng, H. Wei, R. Yang, S. Lord, H. van den Dool, A. Kumar, W. Wang, C. Long, M. Chelliah, Y. Xue, B. Huang, J.-K. Schemm, W. Ebisuzaki, R. Lin, P. Xie, M. Chen, S. Zhou, W. Higgins, C.-Z. Zou, Q. Liu, Y. Chen, Y. Han, L. Cucurull, R. W. Reynolds, G. Rutledge, and M. Goldberg, "The NCEP Climate Forecast System Reanalysis," Bull. Amer. Meteorol. Soc., No. 8, 91 (2010).

    Article  Google Scholar 

  48. M. Setvak, D. T. Lindsey, P. Novak, P. K. Wang, M. Radova, J. Kerkmann, L. Grasso, S. Su, R. Rabin, J. Stastka, and Z. Charvat, "Satellite-observed Cold-ring-shaped Features Atop Deep Convective Clouds," Atmos. Res., No. 1–2, 97 (2010).

    Article  Google Scholar 

  49. A. Shikhov and A. Chernokulsky, "A Satellite-derived Climatology of Unreported Tornadoes in Forested Regions of Northeast Europe," Remote Sens. Environ., 204 (2018).

    Article  Google Scholar 

  50. A. N. Shikhov, A. V. Chernokulsky, I. Azhigov, and A. Semakina, "A Satellite-derived Database for Stand-replacing Windthrow Events in Boreal Forests of European Russia in 1986–2017," Earth Syst. Sci. Data, 12 (2020).

    Article  Google Scholar 

  51. A. Shikhov, A. Chernokulsky, N. Kalinin, A. Bykov, and E. Pischalnikova, "Climatology and Formation Environments of Severe Convective Windstorms and Tornadoes in the Perm Region (Russia) in 1984–2020," Atmosphere, No. 11, 12 (2021).

    Article  Google Scholar 

  52. Sounding Data Archive, http://weather.uwyo.edu/upperair/np.html (Accessed March 11, 2022).

  53. A. F. Stein, R. R. Draxler, G. D. Rolph, B. Stunder, Mark D. Cohen, and F. Ngan, "NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modeling System," Bull. Amer. Meteorol. Soc., 96 (2015).

    Article  Google Scholar 

  54. M. Taszarek, J. T. Allen, T. Pucik, K. A. Hoogewind, and H. E. Brooks, "Severe Convective Storms across Europe and the United States. Part II: ERA5 Environments Associated with Lightning, Large Hail, Severe Wind, and Tornadoes," J. Climate, 33 (2020).

    Article  Google Scholar 

  55. M. Taszarek, H. E. Brooks, and B. Czernecki, "Sounding-derived Parameters Associated with Convective Hazards in Europe," Mon. Wea. Rev., 145 (2017).

    Article  Google Scholar 

  56. M. Taszarek, N. Pilguj, J. Orlikowski, A. Surowiecki, S. Walczakiewicz, W. Pilorz, K. Piasecki, L. Pajurek, and M. Polrolniczak, "Derecho Evolving from a Mesocyclone—A Study of 11 August 2017 Severe Weather Outbreak in Poland: Event Analysis and High-resolution Simulation," Mon. Wea. Rev., No. 6, 147 (2019).

    Article  Google Scholar 

  57. R. L. Thompson, R. Edwards, J. A. Hart, K. Elmore, and P. Markowski, "Close Proximity Soundings within Supercell Environments Obtained from the Rapid Update Cycle," Wea. Forecast., No. 6, 18 (2003).

    Article  Google Scholar 

  58. J. M. Wiedenmann, A. R. Lupo, I. I. Mokhov, and E. A. Tikhonova, "The Climatology of Blocking Anticyclones for the Northern and Southern Hemispheres: Block Intensity as a Diagnostic," J. Climate, 15 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Chernokulsky.

Additional information

Translated from Meteorologiya i Gidrologiya, 2022, No. 11, pp. 71-90. https://doi.org/10.52002/0130-2906-2022-11-71-90.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chernokulsky, A.V., Shikhov, A.N., Azhigov, I.O. et al. Squalls and Tornadoes over the European Territory of Russia on May 15, 2021: Diagnosis and Modeling. Russ. Meteorol. Hydrol. 47, 867–881 (2022). https://doi.org/10.3103/S1068373922110073

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068373922110073

Keywords

Navigation