Skip to main content
Log in

Peat Fire Detection to Estimate Greenhouse Gas Emissions

  • Published:
Russian Meteorology and Hydrology Aims and scope Submit manuscript

Abstract

Peat fires differ from other wildfires by significant carbon loss, the emission of greenhouse gases and other combustion products as well as by serious environmental consequences. Not only biomass but also peat is burnt. A possibility of detecting peat fires from satellite and ground-based data is considered for the fires in the Moscow region in 2010. The peat fire detection technique was tested by superimposing data on thermal anomalies from Terra/Aqua MODIS satellite data on the peatland contours, as well as by analyzing the vegetation cover changes before fires and the next year using the Landsat satellite multispectral data. Threshold values were found for the fire duration, maximum temperature, and maximum fire radiative power that characterize peat fires and can be used to discriminate between fires on peat lands and peat fires themselves for taking into account emissions not only from biomass burning but also from soil carbon loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. S. E. Vomperskii, T. V. Glukhova, M. V. Smagina, and A. G. Kovalev, "Conditions and Consequences of Wild Fires in Pine Forests on the Drained Mires" Lesovedenie, No. 6 (2007) [Russ. J. For. Sci., No. 6 (2007)].

    Google Scholar 

  2. S. E. Vomperskii, A. A. Sirin, A. A. Sal’nikov, O. P. Tsyganova, and N. A. Valyaeva, "Estimation of Forest Cover Extent over Peat Lands and Plaudified Shallo Peat Lands in Russia," Lesovedenie, No. 5 (2011) [in Russian].

  3. T. V. Glukhova and A. A. Sirin, "Losses of Soil Carbon upon a Fire on a Drained Forested Raised Bog," Pochvovedenie, No. 5 (2018) [Eurasian Soil Sci., No. 5, 51 (2018)].

    Article  Google Scholar 

  4. D. V. Il’yasov, A. A. Sirin, L. Yu. Makarova, A. V. Bukin, and N. E. Korablina, "GIS Mapping of Natural and Human-disturbed Peatlands in the Ryazan Oblast," Vestnik Ryazanskogo Gosudarstvennogo Agrotekhnologicheskogo Universiteta im. P.A. Kostycheva, No. 1 (2019) [in Russian].

  5. E. A. Loupian, I. V. Balashov, K. S. Sen’ko, M. A. Burtsev, F. V. Stytsenko, and A. A. Mazurov, "Updated Longterm Series of Fire Data for the Territory of Russia According to Collection 6 MODIS," in Proceedings of the 18th All-Russian Open Conference "Modern Problems of Remote Sensing of the Earth from Space" (IKI RAN, Moscow, 2020) [in Russian].

  6. E. A. Loupian, A. A. Proshin, M. A. Burtsev, A. V. Kashnitskii, I. V. Balashov, S. A. Bartalev, A. M. Konstantinova, D. A. Kobets, A. A. Mazurov, V. V. Marchenkov, A. M. Matveev, M. V. Radchenko, I. G. Sychugov, V. A. Tolpin, and I. A. Uvarov, "Experience of Development and Operation of the IKI-Monitoring Center for Collective Use of Systems for Archiving, Processing and Analyzing Satellite Data," Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa, No. 3, 16 (2019) [in Russian].

    Article  Google Scholar 

  7. M. A. Medvedeva, A. E. Vozbrannaya, S. A. Bartalev, and A. A. Sirin, "Multispectral Remote Sensing for Assessin Changes on Abandoned Peat Extraction Lands," Issledovanie Zemli iz Kosmosa, No. 5 (2011) [in Russian].

    Google Scholar 

  8. M. A. Medvedeva, A. E. Vozbrannaya, A. A. Sirin, and A. A. Maslov, "Capabilities of Multispectral Remote Sensing Data in an Assessment of the Status of Abandoned Fire Hazardous and Rewetting Peat Extraction Lands," Issledovanie Zemli iz Kosmosa, No. 3 (2017) [in Russian].

  9. M. A. Medvedeva, D. A. Makarov, and A. A. Sirin, "Applicability of Different Spectral Indexes Based on Satellite Data for Peat Fire Area Estimation," Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa No. 5, 17 (2020) [in Russian].

    Article  Google Scholar 

  10. National Report on Inventory of Anthropogenic Emissions from Sources and Absoprtion by Greenhouse Gas Absorbers not Controlled by the Montreal Protocol for 1990–2020, Part 1 (Roshydromet, Moscow, 2022), https://unfccc.int/documents/461970 [in Russian].

  11. A. A. Sirin, D. A. Makarov, I. Gummert, A. A. Maslov, and Ya. I. Gul’be, "Peat Burning Depth and Carbon Loss in Case of a Subterranean Forest Fire," Lesovedenie, No. 5 (2019) [in Russian].

  12. A. A. Sirin, A. A. Maslov, N. A. Valyaeva, O. P. Tsyganova, and T. V. Glukhova, "Mapping of Peatbogs in the Moscow Region Based on High-resolution Satellite Observation Data," Lesovedenie, No. 5 (2014) [in Russian].

  13. A. A. Sirin, M. A. Medvedeva, D. V. Il’yasov, V. N. Korotkov, T. Yu. Minaeva, and G. G. Suvorov, "Rewetted Peatlands in Climate Reports of the Russian Federation," Fundamental’naya i Prikladnaya Klimatologiya, No. 3, 7 (2021) [in Russian].

  14. A. A. Sirin, M. A. Medvedeva, D. A. Makarov, A. A. Maslov, and H. Joosten, "Monitoring of Vegetation Cover of Rewetted Peatlands in the Moscow Oblast," Vestnik SPbGU. Nauki o Zemle, No. 2, 65 (2019) [in Russian].

  15. A. A. Sirin and T. Yu. Minaeva, Peatbogs in Russia: To the Analysis of Sectorial Information (GEOS, Moscow, 2001) [in Russian].

    Google Scholar 

  16. A. Sirin, T. Minaeva, A. Vozbrannaya, and S. Bartalev, "How to Avoid Peat Fires?", Science in Russia, No. 2 (2011).

    Google Scholar 

  17. S. K. Akagi, R. J. Yokelson, C. Wiedinmyer, M. Alvarado, J. Reid, T. Karl, J. Crounse, and P. Wennberg, "Emission Factors for Open and Domestic Biomass Burning for Use in Atmospheric Models," Atmos. Chem. Phys., 11 (2011).

    Article  Google Scholar 

  18. AMAP, 2021. Impacts of Short-lived Climate Forcers on Arctic Climate, Air Quality, and Human Health. Summary for Policymakers (Arctic Monitoring and Assessment Programme (AMAP), Tromso, Norway, 2021), https://www.amap.no/documents/doc/impacts-of-short-lived-climate-forcers-on-arctic-climate-air-quality-and-human- health.-summary-for-policy-makers/3512.

  19. S. A. Bartalev, V. A. Egorov, V. Yu. Efremov, E. V. Flitman, E. A. Loupian, and F. V. Stytsenko, "Assessment of Burned Forest Areas over the Russian Federation from MODIS and Landsat-TM/ETM+ Imagery," in Global Forest Monitoring from Earth Observation, Ed. by F. Achard and M. C. Hansen (CRC Press, Taylor & Francis Group, 2013).

  20. C. Burke, S. Wich, K. Kusin, O. McAree, M. E. Harrison, B. Ripoll, Y. Ermiasi, M. Mulero-Pazmany, and S. Longmore, "Thermal-drones as a Safe and Reliable Method for Detecting Subterranean Peat Fires," Drones, 3 (2019).

    Article  Google Scholar 

  21. Climate Change and Land. IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems, Ed. by P. R. Shukla, J. Skea, E. C Buendia, V. Masson-Delmotte, H.-O. Portner, D. C. Roberts, P. Zhai, R. Slade, S. Connors, R. van Diemen, M. Ferrat, E. Haughey, S. Luz, S. Neogi, M. Pathak, J. Petzold, J. P Pereira, P. Vyas, E. Huntley, K. Kissick, M. Belkacemi, and J. Malley (2019).

  22. P. H. Freeborn, M. J. Wooster, D. P. Roy, and M. A. Cochrane, "Quantification of MODIS Fire Radiative Power (FRP) Measurement Uncertainty for Use in Satellite-based Active Fire Characterization and Biomass Burning Estimation," Geophys. Res. Lett., 41 (2014).

    Article  Google Scholar 

  23. B. Gao, "NDWI—A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water from Space," Remote Sens. Environ., 58 (1996).

    Article  Google Scholar 

  24. L. Giglio, J. Descloitres, C. O. Justice, and Y. J. Kaufman, "An Enhanced Contextual Fire Detection Algorithm for MODIS," Remote Sens. Environ., 87 (2003).

    Article  Google Scholar 

  25. G. Granath, P. Moore, M. Lukenbach, and J. M. Waddington, "Mitigating Wildfire Carbon Loss in Managed Northern Peatlands through Restoration," Sci. Rep., 6 (2016).

    Article  Google Scholar 

  26. Y. Hu, N. Fernandez-Anez, T. E. L. Smith, and G. Rein, "Review of Emissions from Smouldering Peat Fires and Their Contribution to Regional Haze Episodes," Int. J. Wildland Fire, 27 (2018).

    Article  Google Scholar 

  27. X. Huang and G. Rein, "Downward Spread of Smouldering Peat Fire: The Role of Moisture, Density and Oxygen Supply," Int. J. Wildland Fire, 26 (2017).

    Article  Google Scholar 

  28. IPCC 2006. IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme, Ed. by H. S. Eggleston, L. Buendia, K. Miwa, T. Ngara, and K. Tanabe, Vol. 4: Agriculture, Forestry and Other Land Use (IGES, Japan, 2006).

  29. IPCC 2013. Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Ed. by T. Hiraishi, T. Krug, K. Tanabe, N. Srivastava, J. Baasansuren, M. Fukuda, and T. G. Troxler (IPCC, Switzerland, 2014).

  30. H. Joosten, A. Sirin, J. Couwenberg, J. Laine, and P. Smith, "The Role of Peatlands in Climate Regulation," in Peatland Restoration and Ecosystem Services: Science, Policy and Practice, Ed. by A. Bonn, T. Allott, M. Evans, H. Joosten, and R. Stoneman (Cambridge Univ. Press., Cambridge, 2016).

    Google Scholar 

  31. Y. J. Kaufman, C. O. Justice, L. P. Flynn, J. D. Kendall, E. M. Prins, L. Giglio, D. E. Ward, W. P. Menzel, and A. W. Setzer, "Potential Global Fire Monitoring from EOS-MODIS," J. Geophys. Res., 103 (1998).

    Article  Google Scholar 

  32. R. A. Mickler, D. P. Welch, and A. D. Bailey, "Carbon Emissions during Wildland Fire on a North American Temperate Peatland," Fire Ecol., 13 (2017).

    Article  Google Scholar 

  33. T. Minayeva, A. A. Sirin, and G. B. Stracher, "The Peat Fires of Russia," in Coal and Peat Fires: A Global Perspective, Ed. by G. B. Stracher, A. Prakash, E. V. Sokol, and B. V. Elsevier (2012).

  34. S. E. Page, J. O. Rieley, and C. J. Banks, "Global and Regional Importance of the Tropical Peatland Carbon Pool," Global Change Biol., 17 (2011).

    Article  Google Scholar 

  35. B. Poulter, N. L. Christensen Jr., and P. N. Halpin, "Carbon Emissions from a Temperate Peat Fire and Its Relevance to Interannual Variability of Trace Atmospheric Greenhouse Gases," J. Geophys. Res Atmos., 111 (2006).

  36. G. Rein, "Smouldering Fires and Natural Fuels," in Fire Phenomena and the Earth System: An Interdisciplinary Guide to Fire Science, Ed. by C. M. Belcher (Wiley, New York, NY, USA, 2013).

    Book  Google Scholar 

  37. G. Rein, N. Cleaver, C. Ashton, P. Pironi, and J. L. Torero, "The Severity of Smouldering Peat Fires and Damage to the Forest Soil," Catena, 74 (2008).

    Article  Google Scholar 

  38. S. Rossi, F. N. Tubiello, P. Prosperi, M. Salvatore, H. Jacobs, R. Biancalani, J. I. House, and L. Boschetti, "FAOSTAT Estimates of Greenhouse Gas Emissions from Biomass and Peat Fires," Climate Change, 135 (2016).

    Article  Google Scholar 

  39. M. L. Schulte, D. L. McLaughlin, F. C. Wurster, J. M. Varner, R. D. Stewart, W. M. Aust, C. N. Jones, and B. Gile, "Short- and Long-term Hydrologic Controls on Smouldering Fire in Wetland Soils," Int. J. Wildland Fire, 28 (2019).

    Article  Google Scholar 

  40. D. Shaposhnikov, B. Revich, T. Bellander, G. B. Bedada, M. Bottai, T. Kharkova, E. Kvasha, T. Lind, and G. Pershagen, "Long-term Impact of Moscow Heat Wave and Wildfires on Mortality," Epidemiology, 26 (2015).

    Article  Google Scholar 

  41. A. Sirin, A. Maslov, D. Makarov, Y. Gulbe, and H. Joosten, "Assessing Wood and Soil Carbon Losses from a Forest-peat Fire in the Boreo-nemoral Zone," Forests, 12 (2021).

    Article  Google Scholar 

  42. A. Sirin and M. Medvedeva, "Remote Sensing Mapping of Peat-Fire-Burnt Areas: Identification among Other Wildfires," Remote Sens., 14 (2022).

    Article  Google Scholar 

  43. A. Sirin, M. Medvedeva, V. Korotkov, V. Itkin, T. Minayeva, D. Ilyasov, G. Suvorov, and H. Joosten, "Addressing Peatland Rewetting in Russian Federation Climate Reporting," Land, 10 (2021).

    Article  Google Scholar 

  44. A. A. Sirin, M. A. Medvedeva, D. A. Makarov, A. A. Maslov, and H. Joosten, "Multispectral Satellite-based Monitoring of Land Cover Change and Associated Fire Reduction after Large-scale Peatland Rewetting Following the 2010 Peat Fires in Moscow Region (Russia)," Ecol. Eng., 158 (2020).

    Article  Google Scholar 

  45. A. Sirin, M. Medvedeva, A. Maslov, and A. Vozbrannaya, "Assessing the Land and Vegetation Cover of Abandoned Fire Hazardous and Rewetted Peatlands: Comparing Different Multispectral Satellite Data," Land, 7 (2018).

    Article  Google Scholar 

  46. M. R. Turetsky, B. Benscoter, S. Page, G. Rein, G. R. van der Werf, and A. Watts, "Global Vulnerability of Peatlands to Fire and Carbon Loss," Nature Geosci., 8 (2015).

    Article  Google Scholar 

  47. S. Wilkinson, R. Andersen, P. Moore, S. Davidson, G. Granath, and J. Waddington, "Don’t Burn up: Northern Peat Fire Emissions and the Remaining Carbon Budget," Preprint (Version 1), Res. Square (2022).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Sirin.

Additional information

Translated from Meteorologiya i Gidrologiya, 2022, No. 10, pp. 33-45. https://doi.org/10.52002/0130-2906-2022-10-33-45.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sirin, A.A., Medvedeva, M.A., Itkin, V.Y. et al. Peat Fire Detection to Estimate Greenhouse Gas Emissions. Russ. Meteorol. Hydrol. 47, 748–757 (2022). https://doi.org/10.3103/S106837392210003X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S106837392210003X

Keywords

Navigation