Skip to main content
Log in

Effects of High Aerosol Air Pollution on the Evolution of Convective Clouds during a Thunderstorm in China According to Three-dimensional Numerical Simulations

  • Published:
Russian Meteorology and Hydrology Aims and scope Submit manuscript

Abstract

Numerical simulation of evolution of a convective cloud and precipitation during a thunderstorm event that took place on August 11, 2017 in Beijing (China) against a background of high aerosol air pollution was performed using a numerical nonstationary three-dimensional model. Different microphysical parameters of drops and ice particles which depend on aerosol pollution of the atmosphere, were varied: an autoconversion threshold for cloud droplets and raindrops and parameters of raindrop and hailstone size distribution. It was found for this case that liquid drops do not play a significant role in the convective cloud evolution. The effect of aerosol pollution both on the raindrop size spectrum and on the transition of cloud droplets to raindrops does not influence significantly dynamic, microphysical and electrical properties of the cloud. At the same time, the change in the ice particle spectrum towards the size decrease that happens under the influence of increased aerosol pollution, has a significant impact on the evolution of the cloud and precipitation. The amount of precipitation decreases both within the cloud and on the underlying surface. However, the lightning activity of the cloud changes little.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

REFERENCES

  1. A. M. Abshaev, A. Kh. Adzhiev, N. E. Veremei, Yu. A. Dovgalyuk, Yu. P. Mikhailovskii, V. B. Popov, A. A. Sinkevich, and M. L. Toropova, “Development of Convective Cloud Electrification According to Empirical and Numerical Models,” Trudy Voenno-kosmicheskoi Akademii Imeni A. F. Mozhaiskogo, No. S674 (2020) [in Russian].

  2. M. E. Berlyand, Modern Problems of Atmospheric Diffusion and Pollution (Gidrometeoizdat, Leningrad, 1975) [in Russian].

  3. N. E. Veremei, Yu. A. Dovgalyuk, V. Gopalakrishnan, K. F. Komarovskikh, P. Murugavel, S. D. Pawar, and A. A. Sinkevich, “Studying the Effects of Severe Aerosol Pollution of the Atmosphere on the Dynamics of Cumulonimbus Cloud Charge Structure by Numerical Modeling,” Meteorol. Gidrol., No. 12 (2015) [Russ. Meteorol. Hydrol., No. 12, 40 (2015)].

    Article  Google Scholar 

  4. N. E. Veremei, Yu. A. Dovgalyuk, E. V. Dorofeev, A. A. Sinkevich, and K. F. Komarovskikh, “Numerical Simulation of Soot Aerosol Effects on the Convective Cloud Evolution under High Aerosol Air Pollution,” Trudy GGO, No. 572 (2014) [in Russian].

  5. N. E. Veremei, Yu. A. Dovgalyuk, M. A. Zatevakhin, A. A. Ignat’ev, V. N. Morozov, and R. S. Pastushkov, “Description of the Base Numerical Nonstationary Three-dimensional Convective Cloud Model,” Trudy GGO, No. 582 (2016) [in Russian].

  6. V. V. Voevodin, S. A. Zhumatii, S. I. Sobolev, A. S. Antonov, P. A. Bryzgalov, D. A. Nikitenko, and K. S. Stefanov, The Practice of “Lomonosov” Supercomputer (Otkrytye Sistemy, Moscow, 2012) [in Russian].

    Google Scholar 

  7. Yu. A. Dovgalyuk, N. E. Veremei, and A. A. Sinkevich, Using the One-and-half-dimensional Model to Solve Fundamental and Applied Problems of the Cloud Physics, 2nd ed. (Mobi Dik, St. Petersburg, 2013) [in Russian].

    Google Scholar 

  8. Yu. A. Dovgalyuk, N. E. Veremei, A. A. Sin’kevich, Yu. P. Mikhailovskii, M. L. Toropova, V. B. Popov, J. Lu, and J. Yang, “Investigation of Electrification Mechanisms and Relationship between the Electrical Discharge Frequency and Radar Characteristics of the Thunderstorm in China,” Meteorol. Gidrol., No. 10 (2020) [Russ. Meteorol. Hydrol., No. 10, 45 (2020)].

  9. Yu. A. Dovgalyuk, N. E. Veremei, M. L. Toropova, A. A. Sinkevich, A. B. Kurov, N. N. Volkov, and A. A. Ignat’ev, “Features of Convective Cloud and Precipitation Evolution under Conditions of High Aerosol Air Pollution Caused by Wildfires,” Trudy GGO, No. 588 (2018) [in Russian].

  10. Yu. A. Dovgalyuk and L. S. Ivlev, Physics of Aquatic and Other Atmospheric Aerosols (SPbGU, Leningrad, 1998) [in Russian].

    Google Scholar 

  11. Yearbook. Atmospheric Pollution in Russian Cities (St. Petersburg, 2012) [in Russian].

  12. A. S. Emilenko, V. M. Kopeikin, and Wan Genchen, “Long-period Variability of Atmospheric Pollution with Submicron Aerosol and Black Carbon in the Area of Beijing,” in Proceedings of the 11th Scientific-applied Conference “Natural and Anthropogenic Aerosol,” October 16–18, 2018 (St. Petersburg, 2018) [in Russian].

  13. N. O. Plaude, E. A. Stulov, I. P. Parshutkina, E. V. Sosnikova, and N. A. Monakhova, Characteristics of Atmospheric Aerosol in the Moscow Region (Nauchnyi Mir, Moscow, 2013) [in Russian].

    Google Scholar 

  14. E. L. Potashnik and A. D. Kuznetsov, Mathematical Modeling of Cloud Processes (RGGMU, St. Petersburg, 2010) [in Russian].

    Google Scholar 

  15. A. A. Sinkevich, Yu. A. Dovgalyuk, N. E. Veremei, A. B. Kurov, Yu. P. Mikhailovskii, E. V. Bogdanov, M. L. Toropova, A. A. Ignat’ev, A. Kh. Adzhiev, A. M. Malkarova, A. M. Abshaev, V. Gopalakrishnan, P. Murugavel, and S. D. Pawar, “Investigations of the Development of Thunderstorm with Hail. Part 3. Numerical Simulation of Cloud Evolution,” Meteorol. Gidrol., No. 8 (2017) [Russ. Meteorol. Hydrol., No. 8, 42 (2017)].

  16. A. A. Sinkevich, Yu. A. Dovgalyuk, N. E. Veremei, and Yu. P. Mikhailovskii, Convective Cloud Merging (St. Petersburg, 2018) [in Russian].

    Google Scholar 

  17. A. A. Sinkevich, T. V. Kraus, S. D. Pawar, N. E. Veremei, Yu. A. Dovgalyuk, A. B. Kurov, and V. Gopalakrishnan, “Studying High Aerosol Air Pollution Effects on the Development of a Cumulonimbus Cloud Using a Three-dimensional Model,” Trudy GGO, No. 570 (2014) [in Russian].

  18. A. A. Sinkevich, S. D. Pawar, N. E. Veremei, Yu. A. Dovgalyuk, V. Gopalakrishnan, V. Yu. Mikhailovskii, and P. Murugavel, “Investigating Changes in Thundercloud Electrical Structure under Conditions of High Aerosol Air Pollution,” Trudy GGO, No. 578 (2015) [in Russian].

  19. U. Dayan, B. Ziv, T. Shoob, and Y. Enzel, “Suspended Dust over Southeastern Mediterranean and Its Relation to Atmospheric Circulations,” Int. J. Climatol., 28 (2008).

    Article  Google Scholar 

  20. S. Kant, J. Panda, S. K. Pani, and P. K. Wang, “Long-term Study of Aerosol–Cloud–Precipitation Interaction over the Eastern Part of India Using Satellite Observations during Pre-monsoon Season,” Theor. Appl. Climatol., 136 (2019).

    Article  Google Scholar 

  21. E. Kessler, “On the Distribution and Continuity of Water Substance in Atmospheric Circulations,” Meteorol. Monogr., No. 32, 10 (1969).

  22. J. V. Martins, A. Marshak, L. A. Remer, D. Rosenfeld, Y. J. Kaufman, R. Fernandez-Borda, I. Koren, V. Zubko, and P. Artaxo, “Remote Sensing the Vertical Profile of Cloud Droplet Effective Radius, Thermodynamic Phase, and Temperature,” Atmos. Chem. Phys., 11 (2011).

    Article  Google Scholar 

  23. R. T. McNider and F. J. Kopp, “Specification of the Scale and Magnitude of Thermals Used to Initiate Convection in Cloud Models,” J. Appl. Meteorol., 29 (1990).

    Article  Google Scholar 

  24. S. D. Pawar, V. Gopalakrishnan, P. Murugavel, A. A. Sinkevich, and Deen Mani La, “Effects of Environmental Conditions on Inducing Charge Structures of Thunderstorms over Eastern India,” Earth, Planets and Space, No. 54, 66 (2014).

    Article  Google Scholar 

  25. H. R. Pruppacher and J. D. Klett, Microphysics of Clouds and Precipitations (D. Reidel, 1978).

  26. D. Rosenfeld and W. L. Woodley, “Closing the 50-year Circle: From Cloud Seeding to Space and Back to Climate Change through Precipitation Physics,” in Cloud Systems, Hurricanes, and the Tropical Rainfall Measuring Mission (TRMM), Ed. by W.-K. Tao and R. F. Adler, Meteorol. Monogr., 51 (2003).

    Article  Google Scholar 

  27. M. Y. Sun, X. S. Qie, D. X. Liu, Y. Yoav, X. A. Xia, S. F. Yuan, D. F. Wang, J. Y. Lu, S. Abhay, and N. Didier, “Analysis of Potential Effects of Aerosol on Lightning Activity in Beijing Metropolitan Region,” Chin. J. Geophys., No. 5, 63 (2020).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Dovgalyuk.

Additional information

Translated from Meteorologiya i Gidrologiya, 2022, No. 3, pp. 55-67. https://doi.org/10.52002/0130-2906-2022-3-55-67.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dovgalyuk, Y.A., Veremei, N.E., Sinkevich, A.A. et al. Effects of High Aerosol Air Pollution on the Evolution of Convective Clouds during a Thunderstorm in China According to Three-dimensional Numerical Simulations. Russ. Meteorol. Hydrol. 47, 197–206 (2022). https://doi.org/10.3103/S1068373922030050

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068373922030050

Keywords

Navigation