Skip to main content
Log in

Analyzing the Accuracy of ERA-Interim Data on Total Atmospheric Water Vapor in the Arctic Estimated from AMSR2 Data

  • Published:
Russian Meteorology and Hydrology Aims and scope Submit manuscript

Abstract

The accuracy of the ERA-Interim reanalysis data on total atmospheric water vapor is assessed using the AMSR2 (Advanced Microwave Scanning Radiometer 2) measurements. The values of total column water vapor over the open ocean obtained by applying the improved algorithm to the ASMR2 data are used as reference ones to evaluate the quality of water vapor content reproduced by the reanalysis. The analysis performed for the Arctic region for 2015 and based on the average daily values demonstrated a high accuracy of ERA-Interim data on the Arctic water vapor equal to 1.1 kg/m2, which decreases for the water vapor values above 15 kg/m2. Under such conditions, the ERA-Interim data underestimate the water vapor content by several kg/m2. The accuracy of ERA-Interim total water vapor over the seas of the eastern sector of the Russian Arctic is 30% lower than for the other Arctic regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. V. V. Asmus, A. I. Bedritskii, V. N. Stasenko, S. V. Tasenko, and A. B. Uspenskii, “Development of the Space Observation System and Geophysical Monitoring System in Roshydromet,” Meteorol. Gidrol., No. 7 (2017) [Russ. Meteorol. Hydrol., No. 7, 42 (2017)].

  2. A. V. Gavrikov, “Estimating the Reproduction Quality of Precipitation over the North Atlantic and Influence of the Hydrostatic Approximation in the WRF–ARW Atmospheric Model,” Okeanologiya, No. 2,57 (2017) [Oceanology, No. 2, 57 (2017)].

    Article  Google Scholar 

  3. E. V. Zabolotskikh and B. Chapron, “Atmospheric Total Water Vapor Content Retrieval Using AMSR2 Satellite Microwave Radiometer Measurements,” Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa, No. 1 (2017) [in Russian].

    Article  Google Scholar 

  4. Ya. V. Strigunova, K. Yu. Bulgakov, and A. Yu. Ugryumov, “Reanalysis Correction by Buoy Data with the WRF Model,” Uchenye Zapiski RGGMU, No. 51 (2018) [in Russian].

  5. X. Bao and F. Zhang, “Evaluation of NCEP–CFSR, NCEP–NCAR, ERA-Interim, and ERA-40 Reanalysis Datasets against Independent Sounding Observations over the Tibetan Plateau,” J. Climate, No. 1,26 (2012).

    Article  Google Scholar 

  6. M. G. Bosilovich, J. Kennedy, D. Dee, R. Allan, and A. O’Neill, “On the Reprocessing and Reanalysis of Observations for Climate,” inClimate Science for Serving Society, Ed. by G. Asrar and J. Hurrell (Springer, Dordrecht, 2013).

    Chapter  Google Scholar 

  7. B. Chen and Z. Liu, “Global Water Vapor Variability and Trend from the Latest 36 Years (1979 to 2014) Data of ECMWF and NCEP Reanalyses, Radiosonde, GPS, and Microwave Satellite,” J. Geophys. Res. Atmos., No. 19, 121 (2016).

  8. D. P. Dee, S. M. Uppala, A. J. Simmons, P. Berrisford, P. Poli, S. Kobayashi, U. Andrae, M. A. Balmaseda, G. Balsamo, P. Bauer, P. Bechtold, A. C. M. Beljaars, L. van de Berg, J. Bidlot, N. Bormann, C. Delsol, R. Dragani, M. Fuentes, A. J. Geer, L. Haimberger, S. B. Healy, H. Hersbach, E. V. Hylm, L. Isaksen, P. Kellberg, M. Kohler, M. Matricardi, A. P. McNally, B. M. Monge-Sanz, J.-J. Morcrette, B.-K. Park, C. Peubey, P. de Rosnay, C. Tavolato, J.-N. Thepaut, and F. Vitart, “The ERA-Interim Reanalysis: Configuration and Performance of the Data Assimilation System,” Quart. J. Roy. Meteorol. Soc., No. 656, 137 (2011).

  9. R. W. Jones, I. A. Renfrew, A. Orr, B. G. M. Webber, D. M. Holland, and M. A. Lazzara, “Evaluation of Four Global Reanalysis Products Using in Situ Observations in the Amundsen Sea Embayment, Antarctica,” J. Geophys. Res. Atmos., No. 11, 121 (2016).

    Google Scholar 

  10. S. Kravtsov, M. G. Wyatt, J. A. Curry, and A. A. Tsonis, “Two Contrasting Views of Multidecadal Climate Variability in the Twentieth Century,” Geophys. Res. Lett., No. 19, 41 (2014).

  11. L. Ma, T. Zhang, Q. Li, O. W. Frauenfeld, and D. Qin, “Evaluation of ERA-40, NCEP-1, and NCEP-2 Reanalysis Air Temperatures with Ground-based Measurements in China,” J. Geophys. Res. Atmos., No. D15, 113 (2008).

  12. W. S. Parker, “Reanalyses and Observations: What’s the Difference?,” Bull. Amer. Meteorol. Soc., No. 9, 97 (2016).

  13. M. Pena and Z. Toth, “Estimation of Analysis and Forecast Error Variances,” Tellus A: Dynamic Meteorol. and Oceanogr., No. 1,66 (2014).

    Article  Google Scholar 

  14. P. Poli, H. Hersbach, D. P. Dee, P. Berrisford, A. J. Simmons, F. Vitart, P. Laloyaux, D. G. Tan, C. Peubey, and J.-N. Thepaut, “ERA-20C: An Atmospheric Reanalysis of the Twentieth Century,” J. Climate, No. 11, 29 (2016).

    Article  Google Scholar 

  15. M. Schroder, M. Jonas, R. Lindau, J. Schulz, and K. Fennig, “The CM SAF SSM/I-based Total Column Water Vapour Climate Data Record: Methods and Evaluation against Re-analyses and Satellite,” Atmos. Measur. Techn., No. 3, 6 (2013).

    Article  Google Scholar 

  16. M. Schroder, M. Lockhoff, F. Fell, J. Forsythe, T. Trent, R. Bennartz, E. Borbas, M. G. Bosilovich, E. Castelli, and H. Hersbach, “The GEWEX Water Vapor Assessment Archive of Water Vapour Products from Satellite Observations and Reanalyses,” Earth System Science Data, No. 10, 2 (2018).

  17. G. Spreen, L. Kaleschke, and G. Heygster, “Sea Ice Remote Sensing Using AMSR-E 89-GHz Channels,” J. Geophys. Res. Oceans, No. C2, 113 (2008).

  18. K. E. Trenberth, Y. Zhang, J. T. Fasullo, and S. Taguchi, “Climate Variability and Relationships between Top-of-atmosphere Radiation and Temperatures on Earth,” J. Geophys. Res. Atmos., No. 9,120 (2015).

  19. Y. Wang, K. Yang, Z. Pan, J. Qin, D. Chen, C. Lin, Y. Chen, Lazhu, W. Tang, M. Han, N. Lu, and H. Wu, “Evaluation of Precipitable Water Vapor from Four Satellite Products and Four Reanalysis Datasets against GPS Measurements on the Southern Tibetan Plateau,” J. Climate, No. 15, 30 (2017).

  20. F. J. Wentz, SSM/I Version-7 Calibration Report #011012 (Remote Sensing Systems, Santa Rosa, CA, 2013).

  21. E. V. Zabolotskikh and B. Chapron, “Improvements in Atmospheric Water Vapor Content Retrievals over Open Oceans from Satellite Passive Microwave Radiometers,” IEEE J. Selected Topics in Applied Earth Observations and Remote Sensing, No. 7, 10 (2017).

  22. Q. Zhang, J. Ye, S. Zhang, and F. Han, “Precipitable Water Vapor Retrieval and Analysis by Multiple Data Sources: Ground-based GNSS, Radio Occultation, Radiosonde, Microwave Satellite, and NWP Reanalysis Data,” J. Sensors, 2018 (2018).

  23. Q. Zhao, Y. Yao, W. Yao, and S. Zhang, “GNSS-derived PWV and Comparison with Radiosonde and ECMWF ERA-Interim Data over Mainland China,” J. Atmos. and Solar-Terrestrial Phys., 182 (2019).

    Article  Google Scholar 

Download references

Funding

The presented studies were supported by the Russian Science Foundation (grant 17-77-30019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Zabolotskikh.

Additional information

Russian Text ©The Author(s), 2020, published in Meteorologiya i Gidrologiya, 2020, No. 3, pp. 58–65.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zabolotskikh, E.V., Chapron, B. Analyzing the Accuracy of ERA-Interim Data on Total Atmospheric Water Vapor in the Arctic Estimated from AMSR2 Data. Russ. Meteorol. Hydrol. 45, 179–184 (2020). https://doi.org/10.3103/S106837392003005X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S106837392003005X

Navigation