Skip to main content
Log in

Tribotechnical and mechanical properties of Ti-Al-N nanocomposite coatings deposited by the ion-plasma method

  • Published:
Journal of Friction and Wear Aims and scope Submit manuscript

Abstract

The possibility of formation of nanocrystalline Ti-Al-N coatings using the method of ion-plasma deposition is demonstrated. The mechanical and tribotechnical characteristics of the coatings in comparison with TiN coating are studied. Ti-Al-N nanocomposite coatings possess high hardness (35 GPa) and higher wear resistance and lower wear capacity as compared to TiN coating. For a grain size of 12–15 nm the nanostructural Ti-Al-N coating has the following elemental composition: Ti ≈ 60 at %, N ≈ 30 at %, Al ≈ 10 at %. The phase composition of the coating represents the solid solution (Ti, Al)N. For this elemental and phase composition and nanograin size maximal hardness and elasticity modulus of the coating are found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Danilin, B.S. and Syrchin, V.K., Magnetronnye raspylitel’nye sistemy (Magnetron Sputtering Systems), Moscow: Radio i svyaz’, 1982.

    Google Scholar 

  2. Andreev, A.A., Sablev, V.P., Shulaev, V.M., and Grigor’ev, S.N., Vakuumno-dugovye ustroistva i pokrytiya (Vacuum-Arc Devices and Coatings), Kharkov: NNTs “KhFTI”, 2005.

    Google Scholar 

  3. Syrkin, V.G., CSD metod—khimicheskoe parofaznoe osazhdenie (CSD Method—Chemical Vapor Phase Deposition), Moscow: Nauka, 2000.

    Google Scholar 

  4. Beresnev, V.M., Pogrebnyak, A.D., Shpak, A.V., Azarenkov, N.A., et al., Structure, Properties and Synthesis of Hard Nanocrystalline Coatings Deposited by Different Methods, Usp. Fiz. Met., 2007, no. 3, pp. 171–246.

  5. Pogrebnyak, A.D., Shpak, A.V., Azarenkov, N.A., and Beresnev, V.M., Structure and Properties of Hard and Superhard Nanocomposite Coatings, Usp. Fiz. Nauk, 2009, vol. 179, no. 1, pp. 35–64.

    Article  Google Scholar 

  6. Sergeev, V.P., Fedorishcheva, M.V., Voronov, A.V., et al., Tribomechanical Properties and Structure of Ti1−x AlxN Nanocomposite Coatings, Izv. Tomsk. Politekhn. Univ., 2006, vol. 309, no. 2, pp. 149–153.

    Google Scholar 

  7. Levashov, E.A. and Shtanskii, D.V., Multifunctional Nanostructured Films, Usp. Khim., 2007, vol. 76, no. 5, pp. 501–509.

    Google Scholar 

  8. Veprek, S., Maritza, G.J., Veprek-Heijman, M.G.J., Karvankova, P., and Prochazka, J., Different Approaches to Superhard Coatings and Nanocomposites, Thin Solid Films, 2005, vol. 476, pp. 1–29.

    Article  ADS  Google Scholar 

  9. Musil, J. and Hruby, H., Superhard Nanocomposite Ti1 − x AlxN Films Prepared by Magnetron Sputtering, Thin Solid Films, 2000, vol. 65, pp. 104–109.

    Article  ADS  Google Scholar 

  10. Shpak, A.P., Cheremskoi, P.G., Kunitskii, Yu.A., and Sobol’, O.V., Klasternye i nanostrukturnye materialy (Cluster and Nanostructured Materials), Kiev: ID “Akademperiodika”, 2005, vol. 3.

    Google Scholar 

  11. Sobol’, O.V., Forming Mechanism of Condensates Phase-Structural State, Fiz. Inzhener. Poverkhn., 2008, vol. 6, no. 3, pp. 515–519.

    MathSciNet  Google Scholar 

  12. Patscheider, J., Nanocomposite Hard Coatings for Wear Protections, MRS Bull., 2003, vol. 28, no. 3, pp. 180–183.

    Google Scholar 

  13. Tolok, V.T., Shets, O.M., Lymar’, V.F., Beresnev, V.M., Gritsenko, V.I., and Krivonos, M.G., RF Patent no. 1757249, MKI C23 c14/00/, Byull. Izobret., 1993, no. 18, p. 7.

  14. Beresnev, V.M., Tolok, V.T., Shvets, O.M., et al., Micro-Nanolayered Coatings Formed by Vacuum-Arc Deposition Using the High-Frequency Discharge, Fiz. Inzhener. Poverkhn., 2006, vol. 4, nos. 1–2, pp. 93–97.

    Google Scholar 

  15. Beresnev, V.M., Shvets, O.M., and Belyaeva, T.N., Features of High-Frequency Energy Input into Metallic Plasma Flow, Fiz. Inzhener. Poverkhn., 2005, vol. 3, nos. 1–2, pp. 37–39.

    Google Scholar 

  16. Pelleg, J., Zevin, L.Z., Lungo, S., and Croitaru, N., Reactive-Sputter-Deposition TiN Films on Glass Substrates, Thin Solid Films, 1991, vol. 197, pp. 117–128.

    Article  ADS  Google Scholar 

  17. Azarenkov, N.A., Beresnev, V.M., and Pogrebnyak, A.D., Struktura i svoistva zashchitnykh pokrytii i modifitsirovannykh sloev (Structure and Properties of Protective Coatings and Modified Layers), Kharkov: Khrarkovskii natsional’nyi univ., 2007.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Pogrebnyak.

Additional information

Original Russian Text © V.M. Beresnev, A.D. Pogrebnyak, P.V. Turbin, S.N. Dub, G.V. Kirik, M.K. Kylyshkanov, O.M. Shvets, V.I. Gritsenko, A.P. Shipilenko, 2010, published in Trenie i Iznos, 2010, Vol. 31, No. 5, pp. 467–474.

About this article

Cite this article

Beresnev, V.M., Pogrebnyak, A.D., Turbin, P.V. et al. Tribotechnical and mechanical properties of Ti-Al-N nanocomposite coatings deposited by the ion-plasma method. J. Frict. Wear 31, 349–355 (2010). https://doi.org/10.3103/S1068366610050053

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068366610050053

Keywords

Navigation