Skip to main content
Log in

Pyrolysis of Coal by Nanosecond Laser Pulses

  • COAL
  • Published:
Coke and Chemistry Aims and scope Submit manuscript

Abstract

The action of nanosecond laser pulses (wavelength 532 nm, pulse length 14 ns, pulse repetition rate 6 Hz, energy density of laser radiation 0.2–0.6 J/cm2) in G and Zh coal pellets is investigated, in an argon atmosphere. The gaseous products of sample pyrolysis include H2, CH4, C2H2, CO, and CO2. The content of the gaseous components is determined as a function of the laser energy density. In the range 0.2–0.4 J/cm2, the volume of flammable gases formed (referred to the mass loss of the sample) increases; at higher energy densities, practically no change in volume is observed. The gross calorific value of the flammable gases increases linearly from ~8–10 to 19 MJ/m3 with increase in energy density of the laser radiation from 0.2 to 0.6 J/cm2. A nanosecond pulse of energy density more than 0.4 J/cm2 results in intense ablation of the pellets containing 0.005 wt % polyvinyl alcohol. The coal pellets that contain no binder break down under the action of a nanosecond laser pulse of energy density exceeding 0.2 J/cm2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Capuano, L., International energy outlook 2018 (IEO2018). https:// www.eia.gov/pressroom/presentations/capuano_07242018.pdf. Cited September 20, 2022.

  2. Kontorovich, A.E., Epov, M.I., and Eder, L.V., Long-term and medium-term scenarios and factors in world energy perspectives for the 21st century, Russ. Geol. Geophys., 2014, vol. 55, nos. 5–6, pp. 534–543. https://doi.org/10.1016/j.rgg.2014.05.002

    Article  Google Scholar 

  3. Solomon, P.R., Fletcher, T.H., and Pugmire, R.J., Progress in coal pyrolysis, Fuel, 1993, vol. 72, no. 5, pp. 587–597. https://doi.org/10.1016/0016-2361(93)90570-r

    Article  CAS  Google Scholar 

  4. Hu, H., Zhou, Q., Zhu, S., Meyer, B., Krzack, S., and Chen, G., Product distribution and sulfur behavior in coal pyrolysis, Fuel Process. Technol., 2004, vol. 85, nos. 8–10, pp. 849–861. https://doi.org/10.1016/j.fuproc.2003.11.030

    Article  CAS  Google Scholar 

  5. Zhao, Yu., Hu, H., Jin, L., Wu, B., and Zhu, S., Pyrolysis behavior of weakly reductive coals from northwest China, Energy Fuels, 2009, vol. 23, no. 2, pp. 870–875. https://doi.org/10.1021/ef800831y

    Article  CAS  Google Scholar 

  6. Matsuoka, K., Akiho, H., Xu, W.-Ch., Gupta, R., Wall, T., and Tomita, A., The physical character of coal char formed during rapid pyrolysis at high pressure, Fuel, 2005, vol. 84, no. 1, pp. 63–69. https://doi.org/10.1016/j.fuel.2004.07.006

    Article  CAS  Google Scholar 

  7. Li, Ch.-Zh., Some recent advances in the understanding of the pyrolysis and gasification behaviour of Victorian brown coal, Fuel, 2007, vol. 86, nos. 12–13, pp. 1664–1683. https://doi.org/10.1016/j.fuel.2007.01.008

    Article  CAS  Google Scholar 

  8. Mushtaq, F., Mat, R., and Ani, F.N., A review on microwave assisted pyrolysis of coal and biomass for fuel production, Renewable Sustainable Energy Rev., 2014, vol. 39, pp. 555–574. https://doi.org/10.1016/j.rser.2014.07.073

    Article  CAS  Google Scholar 

  9. Zhang, K., Li, Ya., He, Yo., Wang, Z., Li, Q., Kuang, M., Ge, L., and Cen, K., Volatile gas release characteristics of three typical Chinese coals under various pyrolysis conditions, J. Energy Inst., 2017, vol. 91, no. 6, pp. 1045–1056. https://doi.org/10.1016/j.joei.2017.07.004

    Article  CAS  Google Scholar 

  10. Abdelsayed, V., Shekhawat, D., Smith, M.W., Link, D., and Stiegman, A.E., Microwave-assisted pyrolysis of Mississippi coal: A comparative study with conventional pyrolysis, Fuel, 2018, vol. 217, pp. 656–667. https://doi.org/10.1016/j.fuel.2017.12.099

    Article  CAS  Google Scholar 

  11. Xie, X., Zhao, Ya., Qiu, P., Lin, D., Qian, J., Hou, H., and Pei, J., Investigation of the relationship between infrared structure and pyrolysis reactivity of coals with different ranks, Fuel, 2018, vol. 216, pp. 521–530. https://doi.org/10.1016/j.fuel.2017.12.049

    Article  CAS  Google Scholar 

  12. Han, J., Liu, D., Qin, L., Chen, W., and Xing, F., A modified temperature integral approximation formula and its application in pyrolysis kinetic parameters of waste tire, Energy Sources, Part A: Recovery, Util., Environ. Eff., 2018, vol. 40, no. 2, pp. 220–226. https://doi.org/10.1080/15567036.2017.1410596

    Article  CAS  Google Scholar 

  13. Ye, C.-P., Huang, H.-J., Li, X.-H., Li, W.-Yi., and Feng, J., The oxygen evolution during pyrolysis of HunlunBuir lignite under different heating modes, Fuel, 2017, vol. 207, pp. 85–92. https://doi.org/10.1016/j.fuel.2017.06.062

    Article  CAS  Google Scholar 

  14. Cai, H.-Y., Güell, A.J., Chatzakis, I.N., Lim, J.-Y., Dugwell, D.R., and Kandiyoti, R., Combustion reactivity and morphological change in coal chars: Effect of pyrolysis temperature, heating rate and pressure, Fuel, 1996, vol. 75, no. 1, pp. 15–24. https://doi.org/10.1016/0016-2361(94)00192-8

    Article  CAS  Google Scholar 

  15. Han, J., Zhang, L., Kim, H.J., Kasadani, Yu., Li, L., and Shimizu, T., Fast pyrolysis and combustion characteristic of three different brown coals, Fuel Process. Technol., 2018, vol. 176, pp. 15–20. https://doi.org/10.1016/j.fuproc.2018.03.010

    Article  CAS  Google Scholar 

  16. Aguado, R., Olazar, M., Vélez, D., Arabiourrutia, M., and Bilbao, J., Kinetics of scrap tyre pyrolysis under fast heating conditions, J. Anal. Appl. Pyrolysis, 2005, vol. 73, no. 2, pp. 290–298. https://doi.org/10.1016/j.jaap.2005.02.006

    Article  CAS  Google Scholar 

  17. Hanson, R.L., Vanderborgh, N.E., and Brookins, D.G., Characterization of coal by laser pyrolysis gas chromatography, Anal. Chem., 1977, vol. 49, no. 3, pp. 390–395. https://doi.org/10.1021/ac50011a016

    Article  CAS  Google Scholar 

  18. Maswadeh, W., Arnold, N.S., McClennen, W.H., Tripathi, A., DuBow, J., and Meuzelaar, H.L.C., Development of a laser devolatilization gas chromatography/mass spectrometry technique for single coal particles, Energy Fuels, 1993, vol. 7, no. 6, pp. 1006–1012. https://doi.org/10.1021/ef00042a044

    Article  CAS  Google Scholar 

  19. Pyatenko, A.T., Bukhman, S.V., Lebedinskii, V.S., Nasarov, V.M., and Tolmachev, I.Ya., Experimental investigation of single coal particle devolatilization by laser heating, Fuel, 1992, vol. 71, no. 6, pp. 701–704. https://doi.org/10.1016/0016-2361(92)90175-n

    Article  CAS  Google Scholar 

  20. Karn, F.S., Friedel, R.A., and Sharkeyjr, A.S., Studies of the solid and gaseous products from laser pyrolysis of coal, Fuel, 1972, vol. 51, no. 2, pp. 113–115. https://doi.org/10.1016/0016-2361(72)90059-2

    Article  CAS  Google Scholar 

  21. Li, Yu., Hua, F., An, H., and Cheng, Yi., Experimental study of laser pyrolysis of coal and residual oil, Fuel, 2021, vol. 283, p. 119290. https://doi.org/10.1016/j.fuel.2020.119290

    Article  CAS  Google Scholar 

  22. Phuoc, T.X., Mathur, M.P., Ekmann, J.M., and Durbetaki, P., High-energy Nd-YAG laser ignition of coals: Modeling analysis, Combust. Flame, 1993, vol. 94, no. 4, pp. 349–362. https://doi.org/10.1016/0010-2180(93)90119-n

    Article  CAS  Google Scholar 

  23. Aduev, B.P., Nurmukhametov, D.R., Kraft, Ya.V., and Ismagilov, Z.R., Glow spectral characteristics of the hard coal particles surface during the action of laser pulses in the free generation mode, Opt. Spectrosc., 2020, vol. 128, no. 12, pp. 2008–2014. https://doi.org/10.1134/s0030400x20120838

    Article  CAS  Google Scholar 

  24. Aduev, B.P., Kraft, Ya.V., Nurmukhametov, D.R., and Ismagilov, Z.R., Ignition of different marks of coal by laser pulses in the free-running mode, Chem. Sustainable Dev., 2019, vol. 27, no. 6, pp. 549–555. https://doi.org/10.15372/CSD2019172

    Article  CAS  Google Scholar 

  25. Aduev, B.P., Nurmukhametov, D.R., Kraft, Ya.V., and Ismagilov, Z.R., Ignition of different metamorphic grade coals by free-running laser pulses, Opt. Spectrosc., 2020, vol. 128, no. 3, pp. 429–435. https://doi.org/10.1134/s0030400x20030029

    Article  CAS  Google Scholar 

  26. Aduev, B.P., Nurmukhametov, D.R., Kraft, Ya.V., and Ismagilov, Z.R., The ignition energy characteristics and glow kinetics of the flames of dispersed coal particles of different ranks under the action of laser pulses, Chem. Sustainable Dev., 2020, vol. 28, no. 6, pp. 518–526. https://doi.org/10.15372/CSD2020260

    Article  Google Scholar 

  27. Kraft, Ya.V., Nurmukhametov, D.R., Aduev, B.P., and Ismagilov, Z.R., Pyrolysis of Kaichak lignite under the laser radiation exposure, Vestn. Kuzbassk. Gos. Tekh. Univ., 2019, no. 3, pp. 5–16. https://doi.org/10.26730/1999-4125-2019-3-5-15

  28. Dry, M.E., The Fischer–Tropsch process: 1950–2000, Catal. Today, 2002, vol. 71, nos. 3–4, pp. 227–241. https://doi.org/10.1016/S0920-5861(01)00453-9

    Article  CAS  Google Scholar 

  29. Fedorova, N.I., Mikhailova, E.S., and Ismagilov, Z.R., Dependence of the combustion heat of coal on its chemical composition, Chem. Sustainable Dev., 2015, vol. 23, no. 2, pp. 135–138.

    CAS  Google Scholar 

  30. GOST (State Standard) 27313-2015: Solid mineral fuel. Symbols of quality indicators and calculation of analyses to different bases, 2017.

  31. McAllister, S., Chen, J.-Yu., and Fernandez-Pello, A.C., Fundamentals of Combustion Processes, Mechanical Engineering Series, New York: Springer, 2011. https://doi.org/10.1007/978-1-4419-7943-8

    Book  Google Scholar 

Download references

Funding

Financial support was provided by the Russian Science Foundation (grant 22-13-20041, https://rscf.ru/project/22-13-20041/) and by the Kemerovo Region in the Kuznetsk Basin (contract 2, March 22, 2022).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ya. V. Kraft, B. P. Aduev, N. V. Nelubina, V. D. Volkov or Z. R. Ismagilov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by B. Gilbert

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kraft, Y.V., Aduev, B.P., Nelubina, N.V. et al. Pyrolysis of Coal by Nanosecond Laser Pulses. Coke Chem. 66, 449–457 (2023). https://doi.org/10.3103/S1068364X23701119

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068364X23701119

Navigation