Skip to main content
Log in

A Narrow-Linewidth Holmium Fiber Laser with Random Distributed Feedback Based on Artificial Rayleigh Backscattering

  • Published:
Bulletin of the Lebedev Physics Institute Aims and scope Submit manuscript

Abstract

The results of development and investigation of the characteristics of a holmium fiber laser generating at the wavelength of 2 μm in cavity configurations with distributed Bragg reflectors (DBRs) and with random distributed feedback (RDFB) provided by artificial Rayleigh reflectors are considered. The length of the active medium was 75 cm. For the linear scheme with DBRs, the output power was about 330 mW at a pump power of 3.9 W, while the linewidth did not exceed 10 pm. For the configuration with RDFB, the maximum output power was 360 mW, and the generation linewidth was about 3 pm, while up to the output power level of 90 mW, a single-frequency generation regime was observed and the temporal dynamics was pulsed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Scholle, K., Lamrini, S., Koopmann, P., and Fuhrberg, P., “2 µm laser sources and their possible applications,” in Frontiers in Guided Wave Optics and Optoelectronics, Intech, 2010.

    Google Scholar 

  2. Jackson, S.D., Nat. Photonics, 2012, vol. 6, p. 423.

    Article  ADS  CAS  Google Scholar 

  3. Fried, N.M., Biomed. Opt. Express, 2018, vol. 9, p. 4552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Antipov, S.O., Kamynin, V.A., Medvedkov, O.I., Marakulin, A.V., Minashina, L.A., Kurkov, A.S., and Baranikov, A.V., Quantum Electron., 2013, vol. 43, p. 603.

    Article  ADS  Google Scholar 

  5. Kamynin, V.A., Kablukov, S.I., Raspopin, K.S., Antipov, S.O., and Kurkov, A.S., Laser Phys. Lett., 2012, vol. 9, p. 893.

    Article  ADS  CAS  Google Scholar 

  6. Turitsyn, S.K., Babin, S.A., El-Taher, A.E., Harper, P., Churkin, D.V., Kablukov, S.I., Ania-Castañón, J.D., Karalekas, V., and Podivilov, E.V., Nat. Photonics, 2010, vol. 4, p. 231.

    Article  ADS  CAS  Google Scholar 

  7. Skvortsov, M.I., Abdullina, S.R., Podivilov, E.V., Vlasov, A.A., Kharasov, D.R., Fomiryakov, E.A., Nikitin, S.P., Treshchikov, V.N., and Babin, S.A., Photonics, 2022, vol. 9, p. 590.

    Article  CAS  Google Scholar 

  8. Tosi, D., Molardi, C., and Blanc, W., Opt. Laser Technol., 2021, vol. 133, p. 106523.

  9. Loranger, S., Gagné, M., Lambin-Iezzi, V., and Kashyap, R., Sci. Rep., 2015, vol. 5, p. 11177.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Westbrook, P.S., Kremp, T., Feder, K.S., Ko, W., Monberg, E.M., Wu, H., Simoff, D.A., Taunay, T.F., and Ortiz, R.M., J. Light. Technol., 2017, vol. 35, p. 1248.

    Article  ADS  CAS  Google Scholar 

  11. Monet, F., Loranger, S., Lambin-Iezzi, V., Drouin, A., Kadoury, S., and Kashyap, R., Opt. Express, 2019, vol. 27, p. 13895.

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Yan, A., Huang, S., Li, S., Chen, R., Ohodnicki, P., Buric, M., Lee, S., Li, M.-J., and Chen, K.P., Sci. Rep., 2017, vol. 7, p. 1.

    Article  Google Scholar 

  13. Dostovalov, A., Wolf, A., Munkueva, Z., Skvortsov, M., Abdullina, S., Kuznetsov, A., and Babin, S., Opt. Laser Technol., 2023, vol. 167, p. 109692.

  14. Skvortsov, M.I., Wolf, A.A., Dostovalov, A.V., Egorova, O.N., Semjonov, S.L., and Babin, S.A., J. Lightwave Technol., 2022, vol. 40, p. 1829.

    Article  ADS  CAS  Google Scholar 

  15. Skvortsov, M.I., Abdullina, S.R., Wolf, A.A., Dostovalov, A.V., Churin, A.E., Egorova, O.N., Semenov, S.L., Proskurina, K.V., and Babin, S.A., Quantum Electron., 2021, vol. 51, p. 1051.

    Article  ADS  CAS  Google Scholar 

  16. Dostovalov, A.V., Wolf, A.A., Parygin, A.V., Zyubin, V.E., and Babin, S.A., Opt. Express, 2016, vol. 24, p. 16232.

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Bufetov, I.A., Bubnov, M.M., Mel’kumov, M.A., Dudin, V.V., Shubin, A.V., Semenov, S.L., Kravtsov, K.S., Gur’yanov, A.N., Yashkov, M.V., and Dianov, E.M., Quantum Electron., 2005, vol. 35, p. 328.

    Article  ADS  CAS  Google Scholar 

  18. Kurkov, A.S., Sholokhov, E.M., Marakulin, A.V., and Minashina, L.A., Laser Phys. Lett., 2010, vol. 7, p. 587.

    Article  ADS  CAS  Google Scholar 

  19. Wolf, A.A., Skvortsov, M.I., Kamynin, V.A., Zhluktova, I.V., Abdullina, S.R., Dostovalov, A.V., Tsvetkov, V.B., and Babin, S.A., Opt. Lett., 2019, vol. 44, p. 3781.

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Smirnov, A.M., Bazakutsa, A.P., Chamorovskiy, Y.K., Nechepurenko, I.A., Dorofeenko, A.V., and Butov, O.V., ACS Photonics, 2018, vol. 5, p. 5038.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to E. Golikov (Institute of Automation and Electrometry, Siberian Branch, Russian Academy of Sciences) for technical assistance in fabrication of the distributed reflectors. The work was carried out using the equipment of the “High-Resolution Spectroscopy of Gases and Condensed Matter” Center for Collective Use, Institute of Automation and Electrometry, Siberian Branch, Russian Academy of Sciences (Novosibirsk).

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation (state registration number no. 121030500067-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. R. Abdullina.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdullina, S.R., Skvortsov, M.I., Dostovalov, A.V. et al. A Narrow-Linewidth Holmium Fiber Laser with Random Distributed Feedback Based on Artificial Rayleigh Backscattering. Bull. Lebedev Phys. Inst. 50 (Suppl 13), S1425–S1430 (2023). https://doi.org/10.3103/S1068335623602327

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068335623602327

Keywords:

Navigation