Skip to main content
Log in

Search for the Collective Tunneling Effect in the Ionization of Multiply Charged Li-Like Ions by Two Laser Beams of Extreme Intensity

  • LABORATORY ASTROPHYSICS, HIGH ENERGY DENSITY PROCESSES, DIAGNOSTICS, AND OTHER APPLICATIONS
  • Published:
Bulletin of the Lebedev Physics Institute Aims and scope Submit manuscript

Abstract

The probability of simultaneous tunneling of two electrons from multiply charged Li-like ions in a high-intensity laser field is estimated. It is shown that for atoms with a nuclear charge Zm \( \gg \) 1, the probability per unit time of collective tunneling of a 2s–1s electron pair can be more than an order of magnitude higher than the probability of detachment of a 1s electron. This provides favorable conditions for searching for the collective tunneling effect in the ionization of heavy multiply charged ions. The relative contributions of the sequential and collective ionization channels can be separated using the two-beam experimental scheme. Taking into account that to observe the effect, intensities exceeding 1021 W/cm2 in one of the beams are required, the proposed scheme of the experiment to search for the collective tunneling effect requires the use of laser pulses of extreme power, which is planned to be reached, in particular, at the XCELS facility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Popov, V.S., Phys. Usp., 2004, vol. 47, p. 855.

    Article  ADS  Google Scholar 

  2. Milosevic, D.B., Paulus, G.G., Bauer, D., and Becker, W., J. Phys. B: At. Mol. Opt. Phys., 2006, vol. 39, p. R203.

    Article  ADS  Google Scholar 

  3. Krausz, F. and Ivanov, M., Rev. Mod. Phys., 2009, vol. 81, p. 163.

    Article  ADS  Google Scholar 

  4. Calegari, F., Sansone, G., Stagira, S., Vozzi, C., and Nisoli, M., J. Phys. B: At. Mol. Opt. Phys., 2016, vol. 49, p. 062001.

  5. Karnakov, B.M., Mur, V.D., Popov, V.S., and Popruzhenko, S.V., JETP Lett., 2011, vol. 93, p. 238.

    Article  ADS  Google Scholar 

  6. Popruzhenko, S.V., J. Phys. B: At. Mol. Opt. Phys., 2014, vol. 47, p. 204001.

  7. Karnakov, B.M., Mur, V.D., Popruzhenko, S.V., and Popov, V.S., Phys. Usp., 2015, vol. 58, p. 3.

    Article  ADS  Google Scholar 

  8. Becker, W., Goreslavski, S.P., Milosevic, D.B., and Paulus, G.G., J. Phys. B: At. Mol. Opt. Phys., 2018, vol. 51, p. 162002.

  9. Ciappina, M.F., Popruzhenko, S.V., Bulanov, S.V., Ditmire, T., Korn, G., and Weber, S., Phys. Rev. A, 2019, vol. 99, p. 043405.

  10. Di Piazza, A., Müller, C., Hatsagortsyan, C.Z., and Keitel, C.H., Rev. Mod. Phys., 2012, vol. 84, p. 1177.

    Article  ADS  Google Scholar 

  11. Guo, Z. et al., Opt. Express, 2018, vol. 26, p. 26776.

    Article  ADS  Google Scholar 

  12. Sung, J.H. et al., Opt. Lett., 2017, vol. 42, p. 2058.

    Article  ADS  Google Scholar 

  13. Gan, Z. et al., Opt. Expess, 2017, vol. 25, p. 5169; Li, W., et al., Opt. Lett., 2018, vol. 43, p. 5681.

    Article  ADS  Google Scholar 

  14. Yoon, J.W. et al., Optica, 2021, vol. 8, p. 630.

    Article  ADS  Google Scholar 

  15. Papadopoulos, D. et al., High Power Laser Sci. Eng., 2016, vol. 4, p. e34.

  16. Weber, S. et al., Matter Radiat. Extremes, 2017, vol. 2, p. 149.

    Google Scholar 

  17. Khazanov, E., Shaykin, A., Kostyukov, I., et al., High Power Laser Science and Engineering, 2023, pp. 1–77.

  18. Mourou, G., Tajima, T., and Bulanov, S.V., Rev. Mod. Phys., 2006, vol. 78, p. 309.

    Article  ADS  Google Scholar 

  19. Narozhny, N.B. and Fedotov, A.M., Contemp. Phys., 2015, vol. 56, p. 249.

    Article  ADS  Google Scholar 

  20. Blackburn, N.G., Rev. Mod. Plasma Phys., 2020, vol. 4, p. 1.

    Article  ADS  Google Scholar 

  21. Shi, Y., Qin, H., Fisch, N.J., Phys. Plasmas, 2021, vol. 28, p. 042104.

  22. Gonoskov, A., Blackburn, T.G., Marklund, M., and Bulanov, S.S., 2021, arXiv:2107.02161.

  23. Popruzhenko, S.V. and Fedotov, A.M., Usp. Fiz. Nauk (in press).

  24. Aleksakhin, I.S., Zapesochnyi, I.P., and Suran, V.V., Pis’ma Zh. Eksp. Teor. Fiz., 1977, vol. 26, p. 14.

    Google Scholar 

  25. Becker, W., Liu, X., Ho, P.J., and Eberly, J.H., Rev. Mod. Phys., 2012, vol. 84, p. 1011.

    Article  ADS  Google Scholar 

  26. Zon, B.A., J. Theor. Exp. Phys., 1999, vol. 89, p. 219.

    Article  ADS  Google Scholar 

  27. Eichmann, U., Dörr, M., Maeda, H., Becker, W., and Sandner, W., Phys. Rev. Lett., 2000, vol. 84, p. 3550.

    Article  ADS  Google Scholar 

  28. Popruzhenko, S.V. and Lomonosova, T.A., JETP Lett., 2021, vol. 113, p. 317.

    Article  ADS  Google Scholar 

  29. Ullrich, J., Moshammer, R., Dörner, R., Jagutzki, O., Mergel, V., Schmidt-Böcking, H., and Spielberger, L., J. Phys. B: At. Mol. Opt. Phys., 1997, vol. 30, p. 2917; Dörner, R., Mergel, V., Jagutzki, O., Spielberger, L., Ullrich, J., Moshammer, R., and Schmidt-Böcking, H., Phys. Rep., 2000, vol. 330, p. 95.

    ADS  Google Scholar 

  30. Keldysh, L.V., Sov. Phys. JETP, 1965, vol. 20, p. 1307.

    Google Scholar 

  31. Tong, X.M. and Lin, C.D., J. Phys. B: At. Mol. Opt. Phys., 2005, vol. 38, p. 2593.

    Article  ADS  Google Scholar 

  32. Kostyukov, I.Y. and Golovanov, A.A., Phys. Rev. A, 2018, vol. 98, p. 043407.

Download references

Funding

This work was supported by the Ministry of Education and Science of the Russian Federation (project no. FZGU–2020-0035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Popruzhenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by L. Mosina

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popruzhenko, S.V., Tyurin, D.I. Search for the Collective Tunneling Effect in the Ionization of Multiply Charged Li-Like Ions by Two Laser Beams of Extreme Intensity. Bull. Lebedev Phys. Inst. 50 (Suppl 8), S922–S927 (2023). https://doi.org/10.3103/S1068335623200095

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068335623200095

Keywords:

Navigation