Skip to main content
Log in

Possibility of Observing Radiation Effects in the Interaction of Ultrahigh-Power Laser Radiation of a Magnetic Dipole Configuration with Plasma

  • QED PROCESSES IN STRONG LASER FIELD
  • Published:
Bulletin of the Lebedev Physics Institute Aims and scope Submit manuscript

Abstract

The article deals with the problem of taking into account radiation losses in the description of the dynamics of a charged particle in electromagnetic fields. The solution of this fundamental problem is becoming more and more in demand due to the development of ultrahigh-power lasers. Since the generation of radiation by a charged particle depends both on the magnitude of the fields in which it moves and on their structure, the developed multipetawatt multibeam laser systems, such as XCELS, can open up unique ways to solve this problem. This paper proposes one of such ways based on using a magnetic dipole field configuration formed by several laser pulses. We show by means of numerical simulations that when a solid target in the form of a nanowire is irradiated with several petawatt laser pulses that maximize the magnetic field in focus, there may appear an anomalous radiative trapping regime. The formed distributions of accelerated electrons and generated gamma photons in this regime have distinctive properties on the basis of which it is possible to experimentally determine the applicability of various theoretical approaches to the description of radiation losses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Zel’dovich, Ya.B., Sov. Phys. Usp., 1975, vol. 18, p. 79.

    Article  ADS  Google Scholar 

  2. Abraham, M., Theorie der Elektrizität, Leipzig: Teubner, 1905.

    MATH  Google Scholar 

  3. Lorentz, H.A., The Theory of Electrons, Leipzig: Teubner, 1909.

    Google Scholar 

  4. Dirac, P.A.M., Proc. R. Soc. Lond. Ser. A, 1938, vol. 167, p. 148.

  5. Landau, L.D. and Lifshitz, E.M. Teoriya polya (Field Theory), Moscow: Nauka, 1988, p. 274.

  6. Danson, C.N., Haefner, C., Bromage, J., Butcher, T., Chanteloup, J.-C.F., Chowdhury, E.A., Galvanauskas, A., Gizzi, L.A., Hein, J., Hillier, D.I., et al., High Power Laser Sci. Eng., 2019, vol. 7, p. e54.

  7. Di Piazza, A., Hatsagortsyan, K.Z., and Keitel, C.H., Phys. Rev. Lett., 2009, vol. 102, p. 254802.

  8. Gonoskov, A., Bashinov, A., Gonoskov, I., Harvey, C., Ilderton, A., Kim, A., Marklund, M., Mourou, G., and Sergeev, A., Phys. Rev. Lett., 2014, vol. 113, p. 014801.

  9. Fedotov, A.M., Elkina, N.V., Gelfer, E.G., Narozhny, N.B., and Ruhl, H., Phys. Rev. A, 2014, vol. 90, p. 053847.

  10. Ji, L.L., Pukhov, A., Kostyukov, I.Y., Shen, B.F., and Akli, K., Phys. Rev. Lett., 2014, vol. 112, p. 145003.

  11. Blackburn, T.G., Rev. Mod. Plasma Phys., 2020, vol. 4, p. 5.

    Article  ADS  Google Scholar 

  12. Gonoskov, A., Blackburn, T.G., Marklund, M., and Bulanov, S.S., Rev. Mod. Phys., 2022, vol. 94, p. 045001.

  13. Esirkepov, T.Zh., Bulanov, S.S., Koga, J.K., Kando, M., Kondo, K., Rosanov, N.N., Korn, G., and Bulanov, S.V., Phys. Lett. A, 2015, vol. 379, p. 2044.

    Article  ADS  MathSciNet  Google Scholar 

  14. Berestetskii, V.B., Lifshitz, E.M., and Pitaevskii, L.P., Kvantovaya elektrodinamika (Quantum Electrodynamics), Moscow: Nauka, 1989, p. 434.

  15. Neitz, N. and Di Piazza, A., Phys. Rev. Lett., 2013, vol. 111, p. 054802.

  16. Duclous, R., Kirk, J.G., and Bell, A.R., Plasma Phys. Control. Fusion, 2011, vol. 53, p. 015009.

  17. Niel, F., Riconda, C., Amiranoff, F., Duclous, R., and Grech, M., Phys. Rev. E, 2018, vol. 97, p. 043209.

  18. Bashinov, A.V., Kim, A.V., and Sergeev, A.M., Phys. Rev. E, 2015, vol. 92, p. 043105.

  19. Harvey, C.N., Gonoskov, A., Ilderton, A., and Marklund, M., Phys. Rev. Lett., 2017, vol. 118, p. 105004.

  20. Baier, V.N., Katkov, V.M., and Fadin, V.S., Izlucheniye relyativistskikh elektronov (Radiation of Relativistic Electrons), Moscow: Atomizdat, 1973, p. 137.

  21. Nikishov, A.I. and Ritus, V.I., Sov. Phys. JETP, 1964, vol. 19, p. 529.

    Google Scholar 

  22. Bula, C., et al., Phys. Rev. Lett., 1996, vol. 76, p. 3116.

    Article  ADS  Google Scholar 

  23. Cole, J.M., Behm, K.T., Gerstmayr, E., Blackburn, T.G., Wood, J.C., Baird, C.D., Duff, M.J., Harvey, C., Ilderton, A., Joglekar, A.S., et al., Phys. Rev. X, 2018, vol. 8, p. 011020.

  24. Poder, K., Tamburini, M., Sarri, G., Di Piazza, A., Kuschel, S., Baird, C.D., Behm, K., Bohlen, S., Cole, J.M., Corvan, D.J., et al., Phys. Rev. X, 2018, vol. 8, p. 031004.

  25. Wistisen, T.N., Di Piazza, A., Knudsen, H.V., and Uggerhøj, U.I., Nat. Commun., 2018, vol. 9, p. 795.

    Article  ADS  Google Scholar 

  26. Khazanov, E., Shaykin, A., Kostyukov, I., Ginzburg, V., Mukhin, I., Yakovlev, I., Soloviev, A., Kuznetsov, I., Mironov, S., Korzhimanov, A., Bulanov, D., Shaikin, I., Kochetkov, A., Kuzmin, A., Martyanov, M., Lozhkarev, V., Starodubtsev, M., Litvak, A., and Sergeev, A., HIgh Power Laser Sci. Eng., 2023, Exawatt Center for Extreme Light Studies (XCELS), pp. 1–77, https://doi.org/10.1017/hpl.2023.69

  27. Gonoskov, I., Aiello, A., Heugel, S., and Leuchs, G., Phys. Rev. A, 2012, vol. 86, p. 053836.

  28. Bashinov, A.V., Efimenko, E.S., Muraviev, A.A., Volokitin, V.D., Meyerov, I.B., Leuchs, G., Sergeev, A.M., and Kim, A.V., Phys. Rev. E, 2022, vol. 105, p. 065202.

  29. Bell, A.R. and Kirk, J.G., Phys. Rev. Lett., 2008, vol. 101, p. 200403.

  30. Efimenko, E.S., Bashinov, A.V., Muraviev, A.A., Volokitin, V.D., Meyerov, I.B., Leuchs, G., Sergeev, A.M., and Kim, A.V., Phys. Rev. E, 2022, vol. 106, p. 015201.

  31. Dawson, J.M., Rev. Mod. Phys., 1983, vol. 55, p. 403.

    Article  ADS  Google Scholar 

  32. Surmin, I.A., Bastrakov, S.I., Efimenko, E.S., Gonoskov, A.A., Korzhimanov, A.V., and Meyerov, I.B., Comput. Phys. Commun., 2016, vol. 202, p. 204.

    Article  ADS  Google Scholar 

  33. Gonoskov, A., Bastrakov, S., Efimenko, E., Ilderton, A., Marklund, M., Meyerov, I., Muraviev, A., Sergeev, A., Surmin, I., and Wallin, E., Phys. Rev. E, 2015, vol. 92, p. 023305.

  34. Panova, E.A., Gonoskov, A.A., Meerov, I.B., and Efimenko, E.S., in Sb. Matematicheskoe modelirovanie i superkomp’yuternye tekhnologii. Trudy XXI Mezhdunarodnoi konferentsii (Mathematical Modeling and Supercomputer Technologies. Proceedings of the XXI International Conference), Nizhny Novgorod: Izd. Nizhegor. Gos. Univ., 2021, p. 257.

  35. Jirka, M., Klimo, O., Vranic, M., Weber, S., and Korn, G., Sci. Rep., 2017, vol. 7, p. 15302.

    Article  ADS  Google Scholar 

Download references

Funding

The work was supported by the Center of Excellence “Center of Photonics” with funding from the Ministry of Science and Higher Education of the Russian Federation (agreement no. 075-15-2022-316) and by the Ministry of Science and Higher Education of the Russian Federation, state assignment for the Institute of Applied Physics RAS, project 0030-2021-0012. The numerical simulation was performed using computational resources provided by the Joint Supercomputer Center of the Russian Academy of Sciences and computational resources provided by UNN Supercomputing Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Bashinov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by D. Sventsitsky

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bashinov, A.V., Efimenko, E.S., Muraviev, A.A. et al. Possibility of Observing Radiation Effects in the Interaction of Ultrahigh-Power Laser Radiation of a Magnetic Dipole Configuration with Plasma. Bull. Lebedev Phys. Inst. 50 (Suppl 6), S660–S670 (2023). https://doi.org/10.3103/S1068335623180021

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068335623180021

Keywords:

Navigation