Skip to main content
Log in

Annular Optothermal Trap

  • APPLICATION OF LASERS AND OTHER QUESTIONS OF QUANTUM ELECTRONICS
  • Published:
Bulletin of the Lebedev Physics Institute Aims and scope Submit manuscript

Abstract—

The possibilities of annular optothermal trap to capture and manipulate transparent micrometer-sized objects have been investigated both experimentally and using by numerical simulation. In comparison with point optothermal traps, an annular trap makes it possible to control more gradually the particle motion by changing the laser beam power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Zemanek, P., Volpe, G., Jonas, A., and Brzobohaty, O., Perspective on light-induced transport of particles: from optical forces to phoretic motion, Adv. Opt. Photon., 2019, vol. 11, pp. 577–678. https://doi.org/10.1364/AOP.11.000577

    Article  Google Scholar 

  2. Zenteno-Hernandez, J.A., Lozano, J.V., Sarabia-Alonso, J.A., Ramirez-Ramirez, J., Ramos-Garcia, R., Optical trapping in the presence of laser-induced thermal effects, Opt. Lett., 2020, vol. 45, pp. 3961–3964. https://doi.org/10.1364/OL.394647

    Article  ADS  Google Scholar 

  3. Lin, L., Hill, E.H., Peng, X., Zheng, Y., Optothermal manipulations of colloidal particles and living cells, convection dynamics forced by optical trapping with a focused laser beam, Acc. Chem. Res., 2018, vol. 51, no. 6, pp. 1465–1474. https://doi.org/10.1021/acs.accounts.8b00102

    Article  Google Scholar 

  4. Hosokawa, Ch., Tsuji, T., Kishimoto, T., Okubo, T., Kudoh, S.N., Kawano, S., Convection dynamics forced by optical trapping with a focused laser beam, J. Phys. Chem. C, 2020, vol. 124, no. 15, p. 8323. https://doi.org/10.1021/acs.jpcc.9b11663

    Article  Google Scholar 

  5. Flores-Flores, E., Torres-Hurtado, S.A., Paez, R., Ruiz, U., Beltran-Perez, G., Neale, S.L., Ramirez-San-Juan, J.C., and Ramos-Garcia R., Trapping and manipulation of microparticles using laser-induced convection currents and photophoresis, Biomed. Opt. Express, 2015, vol. 6, no. 10, pp. 4079–4087. https://doi.org/10.1364/BOE.6.004079

    Article  Google Scholar 

  6. Kotova, S.P., Kcrobtsov, A.V., Losevsky, N.N., Mayorova, A.M., and Samagin, S.A., Manipulation of microparticles using combined optical traps, J. Quant. Spectrosc. Radiat. Transfer, 021, vol. 268, p. 107641. https://doi.org/10.1016/j.jqsrt.2021.107641

  7. Zhan, W., Wu, R., Gao, K., Zheng, J., and Song, W., An optofluidic conveyor for particle transportation based on a fiber array and photothermal convection, Lab Chip, 2020, vol. 20, p. 4063. https://doi.org/10.1039/d0lc00787k

    Article  Google Scholar 

  8. Braun, M., Thalheim, T., GUnther, K., Mertig, M., and Cichos, F., Thermophoretic trapping and manipulation of single molecules, Proc. SPIE, 2016, vol. 9922, p. 9922OZ. https://doi.org/10.1117/12.2239481

  9. Kumar, S., Gunaseelan, M., Vaippully, R., Kumar, A., Ajith, M., Vaidya, G., Dutta, S., and Roy, B., Pitch-rotational manipulation of single cells and particles using single-beam thermo-optical tweezers, Biomed. Opt. Express, 2020, vol. 11, pp. 3555–3566. https://doi.org/10.1364/BOE.392901

    Article  Google Scholar 

  10. Liu, Z., Lei, J., Zhang, Yu., Tang, X., Zhang, Y., Zhao, E., Yang, J., and Yuan, L., Light-induced thermal convection for size-based microparticle sorting, J. Opt. Soc. Am. B, 2016, vol. 33, pp. 1881–1887. https://doi.org/10.1364/JOSAB.33.001881

    Article  ADS  Google Scholar 

  11. Yang, Y.T., Namura, K., Tsai, M.C., and Suzuki, M., Suppression of photothermal convection using silicon carbide substrates for optofluidics experiments, Results Eng., 2020, vol. 6, p. 100097. https://doi.org/10.1016/j.rineng.2020.100097

  12. Ortega-Mendoza, J.G., Chavez, F., Zaca-Moran, P., Felipe, C., Perez-Sanchez, G.F., Beltran-Perez, G., Goiz, O., and Ramos-Garcia, R., Selective photodeposition of zinc nanoparticles on the core of a single-mode optical fiber, Opt. Express, 2013, vol. 21, pp. 6509–6518. https://doi.org/10.1364/OE.21.006509

    Article  ADS  Google Scholar 

  13. Korobtsov, A.V., Kotova, S.P., Losevsky, N.N., Mayorova, A.M., and Prokopova, D.V., Manipulation of microparticles using optical vortex fields and convective heat fluxes, Proc. 2020 IEEE International Conference on Laser Optics (ICLO), St. Petersburg, 2020, IEEE, 2020. https://doi.org/10.1109/ICLO48556.2020.9285704

  14. Afanasiev, K., Korobtsov, A., Kotova, S., Losevsky, N., Mayorova, A., Patlan, V., and Volostnikov, V., Further development of the laser tweezers technique for biomedical applications, J. Phys. Conf. Ser., 2013, vol. 414, p. 012017. https://doi.org/10.1088/1742-6596/414/1/012017

  15. Siler, M., Jakl, P., Brzobohaty, O., and Zemanek, P., Optical forces induced behavior of a particle in a non-diffracting vortex beam, Opt. Express, 2012, vol. 20, no. 22, pp. 24304–24319. https://doi.org/10.1364/OE.20.024304

    Article  ADS  Google Scholar 

  16. Porfirev, A.P. and Skidanov, R.V., Generation of an array of optical bottle beams using a superposition of Bessel beams, Appl. Opt., 2013, vol. 52, no. 25, pp. 6230–6238. https://doi.org/10.1364/AO.52.006230

    Article  ADS  Google Scholar 

  17. Korobtsov, A.V., Kotova, S.P., Losevsky, N.N., Mayorova, A.M., and Samagin, S.A., Formation of contour optical traps using a four-channel liquid crystal focusing device, Quantum Electron., 2014, vol. 44, p. 1157. https://doi.org/10.1070/QE2014v044n12ABEH015598

    Article  ADS  Google Scholar 

  18. Liu, Z., Tang, X., Zhang, Y., Zhang, Y., Ma, L., Zhang, M., and Yuan, L., Simultaneous trapping of low-index and high-index microparticles using a single optical fiber Bessel beam, Opt. Lasers Eng., 2020, vol. 131, p. 106119. https://doi.org/10.1016/j.optlaseng.2020.106119

  19. Rodrigo, J.A., Angulo, M., and Alieva, T., All-optical motion control of metal nanoparticles powered by propulsion forces tailored in 3D trajectories, Photonics Res., 2021, vol. 9, no. 1, pp. 1–12. https://doi.org/10.1364/PRJ.408680

    Article  Google Scholar 

  20. Chen, Z. and Jiang, Y., Dual optical trap created by tightly focused circularly polarized ring Airy beam, J. Quant. Spectrosc. Radiat. Transfer, 2020, vol. 244, p. 106851. https://doi.org/10.1016/j.jqsrt.2020.106851

  21. Porfirev, A.P., Dubman, A.B., and Porfiriev, D.P., Demonstration of a simple technique for controllable revolution of light-absorbing particles in air, Opt. Lett., 2020, vol. 45, no. 6, pp. 1475–1478. https://doi.org/10.1364/OL.386907

    Article  ADS  Google Scholar 

  22. Kotova, S.P., Mayorova, A.M., and Samagin, S.A., Formation of ring-shaped light fields with orbital angular momentum using a modal type liquid crystal spatial modulator J. Opt., 2018, vol. 20, no. 5, p. 055604.  https://doi.org/10.1088/2040-8986/aab8bb

  23. Yu, J., Miao, C., Wu, J., and Zhou, C., Circular Dammann gratings for enhanced control of the ring profile of perfect optical vortices, Photonics Res., 2020, vol. 8, no. 5, pp. 648–658. https://doi.org/10.1364/PRJ.387527

    Article  Google Scholar 

  24. Korobtsov, A.V., Kotova, S.P., Losevskii, N.N., Maiorova, A.M., and Samagin, S.A., Ring optothermic trap, Kvantovaya Elektronika, 2022, vol. 52, no. 9, pp. 856–861.

    Google Scholar 

  25. CRC Handbook of Chemistry and Physics, Lide, D.R. Ed., Boca Raton: CRC Press, 2003, 84th ed.

    Google Scholar 

  26. Abramochkin, E.G., Kotova, S.P., Korobtsov, A.V., Losevsky, N.N., Mayorova, A.M., Rakhmatulin, M.A., and Volostnikov, V.G., Microobject manipulations using laser beams with nonzero orbital angular momentum, Laser Phys., 2006, vol. 16, no. 5, pp. 842–848. https://doi.org/10.1134/S1054660X06050161

    Article  ADS  Google Scholar 

  27. Abramochkin, E.G., Afanasiev, K.N., Volostnikov, V.G., Korobtsov, A.V., Kotova, S.P., Losevsky, N.N., Mayorova, A.M., and Razueva, E.V., Formation of vortex light fields of specified intensity for laser micromanipulation, Bull. Russ. Acad. Sci.: Phys., 2008, vol. 72, pp. 68–70. https://doi.org/10.3103/S1062873808010176

    Article  Google Scholar 

Download references

Funding

The study was supported by the Russian Foundation for Basic Research (project no. 20-02-00671).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Kotova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Sin’kov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korobtsov, A.V., Kotova, S.P., Losevsky, N.N. et al. Annular Optothermal Trap. Bull. Lebedev Phys. Inst. 50 (Suppl 1), S105–S113 (2023). https://doi.org/10.3103/S1068335623130043

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068335623130043

Keywords:

Navigation