Skip to main content
Log in

Uncertainty in Estimates of Dissociation Rates of Polycyclic Aromatic Hydrocarbons in the Interstellar Medium

  • Published:
Bulletin of the Lebedev Physics Institute Aims and scope Submit manuscript

Abstract

This study is devoted to the estimation of dissociation rates for polycyclic aromatic hydrocarbons (PAHs) molecules due to ultraviolet photon absorption. Four methods are used for calculations. Specifically, the rates of dehydrogenation and destruction of the PAH carbon skeleton are calculated. The results obtained by different methods are compared. It is shown that the results differ significantly, and it is impossible unambiguously estimate minimum sizes and the degree of PAH hydrogenation. The results indicate the need to refine the theoretical models of PAH photodissociation and expand the experimental basis of PAH dissociative properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Allamandola, L.J., Tielens, A.G.G.M., and Barker, J.R., Interstellar polycyclic aromatic hydrocarbons: the infrared emission bands, the excitation/emission mechanism, and the astrophysical implications, Astrophys. J. Suppl. Ser., 1989, vol. 71, pp. 733–775. https://doi.org/10.1086/191396

    Article  ADS  Google Scholar 

  2. McGuire, B.A., Burkhardt, A.M., Kalenskii, S., Shingledecker, C.N., Remijan, A.J., Herbst, E., and McCarthy, M.C., Detection of the aromatic molecule benzonitrile (c-C6H5CN) in the interstellar medium, Science, 2018, vol. 359, pp. 202–205. https://doi.org/10.1126/science.aao4890

    Article  ADS  Google Scholar 

  3. Burkhardt, A.M., Lee, K.L.K., Changala, P.B., Shingledecker, C.N., Cooke, I.R., Loomis, R.A., Wei, H., Charnley, S.B., Herbst, E., McCarthy, M.C., and McGuire, B.A., Discovery of the pure polycyclic aromatic hydrocarbon indene (c-C9CH8) with GOTHAM Observations of TMC-1, Astrophys. J. Lett., 2021, vol. 913, p. L18. https://doi.org/10.3847/2041-8213/abfd3a

    Article  ADS  Google Scholar 

  4. McKay, D.S., Gibson Jr., E.K., Thomas-Keprta, K.L., Vali, H., Romanek, C.S., Clemett, S.J., Chillier, X.D.F., Maechling, C.R., and Zare, R.N., Search for past life on Mars: possible relic biogenic activity in martian meteorite ALH84001, Science, 1996, vol. 273, pp. 924—930. https://doi.org/10.1126/science.273.5277.924

    Article  ADS  Google Scholar 

  5. Sandford, S.A., Aléon, J., Alexander, C.M.O.D., Araki, T., Bajt, S., Baratta, G.A., Borg, J., Bradley, J.P., Brownlee, D.E., Brucato, J.R., Burchell, M.J., Busemann, H., Butterworth, A., Clemett, S.J., Cody, G., et al., Organics captured from comet 81P/Wild 2 by the Stardust spacecraft, Science, 2006, vol. 314, no. 5806, pp. 1720–1724.https://doi.org/10.1126/science.1135841

    Article  ADS  Google Scholar 

  6. Maragkoudakis, A., Peeters, E., and Ricca, A., Probing the size and charge of polycyclic aromatic hydrocarbons, Mon. Not. R. Astron. Soc., 2020, vol. 494, pp. 642–664. https://doi.org/10.1093/mnras/staa681

    Article  ADS  Google Scholar 

  7. Murga, M.S., Kirsanova, M.S., Wiebe, D.S., and Boley, P.A., Orion Bar as a window to the evolution of PAHs, Mon. Not. R. Astron. Soc., 2022, vol. 509, pp. 800–817. https://doi.org/10.1093/mnras/stab3061

    Article  ADS  Google Scholar 

  8. Sidhu, A., Tielens, A.G.G.M., Peeters, E., and Cami. J., Polycyclic aromatic hydrocarbon emission model in photodissociation regions-I. Application to the 3.3, 6.2, and 11.2 µm bands., Mon. Not. R. Astron. Soc., 2022, vol. 514, pp. 342–369. https://doi.org/10.1093/mnras/stac1255

    Article  ADS  Google Scholar 

  9. Allain, T., Leach, S., and Sedlmayr, E., Photodestruction of PAHs in the interstellar medium I. Photodissociation rates for the loss of an acetylenic group, Astron. Astrophys., 1996, vol. 305, p. 602. https://ui.adsabs.harvard.edu/abs/1996A&A…305…602A/abstract

    ADS  Google Scholar 

  10. Montillaud, J., Joblin, C., and Toublanc, D., Evolution of polycyclic aromatic hydrocarbons in photodissociation regions. Hydrogenation and charge states, Astron. Astrophys., 2013, vol. 552, p. A15. https://doi.org/10.1051/0004-6361/201220757

    Article  ADS  Google Scholar 

  11. Andrews, H., Candian, A., and Tielens, A.G.G.M., Hydrogenation and dehydrogenation of interstellar PAHs: Spectral characteristics and H2 formation, Astron. Astrophys., 2016, vol. 595, p. A23. https://doi.org/10.1051/0004-6361/201628819

    Article  ADS  Google Scholar 

  12. Rice, O.K. and Ramsperger, H.C., Theories of unimolecular gas reactions at low pressures, J. Am. Chem. Soc., 1927, vol. 49, pp. 1617–1629. https://doi.org/10.1021/ja01406a001

    Article  Google Scholar 

  13. Kassel, L.S., Studies in homogeneous gas reactions I, J. Phys. Chem., 1928, vol. 32, pp. 225–242. https://doi.org/10.1021/j150284a007

    Article  Google Scholar 

  14. Tielens, A.G.G.M., Physics and Chemistry of the Interstellar Medium Astronomy, Cambridge: University Press, 2005.

    Google Scholar 

  15. Forst, W., Unimolecular rate theory test in thermal reactions, J. Phys. Chem., 1972, vol. 76, pp. 342–348. https://doi.org/10.1021/j100647a012

    Article  Google Scholar 

  16. Léger, A., D’Hendecourt, L., Boissel, P., and Desert, F.X., Photo-thermo-dissociation. I–A general mechanism for destroying molecules, Astron. Astrophys., 1989, vol. 213, pp. 351–359). https://ui.adsabs.harvard.edu/abs/1989A A…213…351L/abstract

    Google Scholar 

  17. Jochims, H.W., Ruhl, E., Baumgartel, H., Tobita, S., and Leach, S., Size effects on dissociation rates of polycyclic aromatic hydrocarbon cations: laboratory studies and astrophysical implications, Astrophys. J., 1994, vol. 420, pp. 307–317. https://doi.org/10.1086/173560

    Article  ADS  Google Scholar 

  18. Berné, O. and Tielens, A.G.G.M., Formation of buckminsterfullerene (C60) in interstellar space, Proc. Natl. Acad. Sci. U.S.A., 2012, vol. 109, pp. 401–406. https://doi.org/10.1073/pnas.1114207108

    Article  ADS  Google Scholar 

  19. Simon, V., Rapacioli, M., Rouaut, G., Trinquier, G., and Gadéa, F.X., Dissociation of polycyclic aromatic hydrocarbons: molecular dynamics studies, Phil. Trans. R. Soc. A., 2017, vol. 375, p. 20160195. https://doi.org/10.1098/rsta.2016.0195

  20. Boersma, C., Bauschlicher Jr., C.W., Ricca, A., Mattioda, A.L., Cami, J., Peeters, E., de Armas, F.S., Saborido, G.P., Hudgins, D.M., and Allamandola, L.J., The NASA Ames PAH IR spectroscopic database version 2.00: Updated content, web site, and on(off) line tools, Astrophys. J. Suppl., 2014, vol. 211, p. 8. https://doi.org/10.1088/0067-0049/211/1/8

    Article  ADS  Google Scholar 

  21. Bauschlicher Jr., C.W., Ricca, A., Boersma, C., and Allamandola, L.J., The NASA Ames PAH IR spectroscopic database: computational version 3.00 with updated content and the introduction of multiple scaling factors, Astrophys. J. Suppl., 2018, vol. 234, p. 32. https://doi.org/10.3847/1538-4365/aaa019

    Article  ADS  Google Scholar 

  22. https://www.astrochemistry.org/pahdb/.

  23. Micelotta, E.R., Jones, A.P., and Tielens, A.G.G.M., Polycyclic aromatic hydrocarbon processing in a hot gas, Astron. Astrophys., 2010, vol. 510, p. A37. https://doi.org/10.1051/0004-6361/200911683

    Article  ADS  Google Scholar 

  24. Mathis, J.S., Mezger, P.G., and Panagia, N., Interstellar radiation field and dust temperatures in the diffuse interstellar medium and in giant molecular clouds, Astron. Astrophys., 1983, vol. 128, pp. 212–229. https://ui.adsabs.harvard.edu/abs/1983AA…128…212M/abstract

    ADS  Google Scholar 

  25. Draine, B.T. and Li, A., Infrared emission from interstellar dust I. Stochastic heating of small grains, Astrophys. J., 2001, 551, pp. 807–824.https://doi.org/10.1086/320227

    Article  ADS  Google Scholar 

  26. Draine, B.T. and Li, A., Infrared emission from interstellar dust IV. The silicate-graphite-PAH model in the post-Spitzer era, Astrophys. J., 2001, vol. 657, pp. 810–837. https://doi.org/10.1086/511055

    Article  ADS  Google Scholar 

  27. Goicoechea, J.R., Teyssier, D., Etxaluze, M., Goldsmith, P.F., Ossenkopf, V., Gerin, M., Bergin, E.A., Black, J.H., Cernicharo, J., Cuadrado, S., Falgarone, E., Fuente, A., Hacar, A., Lis, D.C., Marcelino, N., et al., Velocity-resolved [CII] emission and [CII]/FIR mapping along Orion with Herschel, Astrophys. J., 2015, vol. 812, p. 75. https://doi.org/10.1088/0004-637X/812/1/75

    Article  ADS  Google Scholar 

  28. Kaiser, R.I. and Hansen, N., An aromatic universe—A physical chemistry perspective, J. Phys. Chem. A, 2021, vol. 125, pp. 3826–3840. https://doi.org/10.1021/acs.jpca.1c00606

    Article  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation, project no. 18-13-00269.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. S. Murga or D. S. Wiebe.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Kazantsev

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murga, M.S., Wiebe, D.S. Uncertainty in Estimates of Dissociation Rates of Polycyclic Aromatic Hydrocarbons in the Interstellar Medium. Bull. Lebedev Phys. Inst. 49, 416–421 (2022). https://doi.org/10.3103/S1068335622120077

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068335622120077

Keywords:

Navigation