Skip to main content
Log in

Partial Compensation of Thermal Noise in the Fundamental Mode of an Optical Cavity

  • Published:
Bulletin of the Lebedev Physics Institute Aims and scope Submit manuscript

Abstract

Thermal noise of optical cavities limits the accuracy of many experiments on precision laser spectroscopy and interferometry. The study of the physical properties of this noise opens up opportunities for creating more stable cavities, reducing phase noise of optical radiation, and performing accurate optical studies. The paper proposes a method for recording thermal noise of TEM00 mode of a Fabry–Perot cavity using two higher-order “probe” modes, which allows partial compensation of noise in the fundamental mode. Mathematical modeling is performed, which confirms the method efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Abbott, B.P. et al., LIGO: The laser interferometer gravitational-wave observatory, Rep. Prog. Phys., 2009, vol. 72, pp. 113–132. https://doi.org/10.1088/0034-4885/72/7/076901

    Article  Google Scholar 

  2. Savalle, E. et al., Searching for dark matter with an optical cavity and an unequal-delay interferometer, Phys. Rev. Lett., 2021, vol. 126, no. 5, p. 051301. https://doi.org/10.1103/PhysRevLett.126.051301

    Article  ADS  Google Scholar 

  3. Geraci, A.A., Bradley, C., Gao, D., Weinstein, J., and Derevianko, A., Searching for ultralight dark matter with optical cavities, Phys. Rev. Lett., 2019, vol. 123, no. 3–19, p. 031304. https://doi.org/10.1103/PhysRevLett.123.031304

  4. Oelker, E. et al., Demonstration of 4.8 × 10–17 stability at 1 s for two independent optical clocks, Nat. Photonics, 2019, vol. 13, no. 10, pp. 714–719. https://doi.org/10.1038/s41566-019-0493-4

    Article  ADS  Google Scholar 

  5. Brewer, S.M. et al., Al + 27 quantum-logic clock with a systematic uncertainty below 10–18, Phys. Rev. Lett., 2019, vol. 123, no. 3, p. 33201. https://doi.org/10.1103/PhysRevLett.123.033201

    Article  ADS  Google Scholar 

  6. Takamoto, M. et al., Frequency ratios of Sr, Yb, and Hg based optical lattice clocks and their applications, C. R. Phys., 2015, vol. 16, no. 5, pp. 489–498. https://doi.org/10.1016/j.crhy.2015.04.003

    Article  Google Scholar 

  7. Kolachevsky, N.N. and Khabarova, K.Yu., Precision laser spectroscopy in fundamental studies, Phys.-Usp., 2014, vol. 57, p. 1230. https://doi.org/10.3367/UFNr.0184.201412e.1354

    Article  Google Scholar 

  8. Drever, R.W.P. et al., Laser phase and frequency stabilization using an optical resonator, Appl. Phys. B, 1983, vol. 31, no. 2, pp. 97–105. https://doi.org/10.1007/BF00702605

    Article  ADS  Google Scholar 

  9. Häfner, S. et al., 8e−17 Fractional laser frequency instability with a long room-temperature cavity, Opt. Lett., 2015, vol. 40, no. 9, p. 2112. https://doi.org/10.1364/OL.40.002112

    Article  ADS  Google Scholar 

  10. Matei, D.G. et al., 1.5 μm Lasers with sub-10 mHz linewidth, Phys. Rev. Lett., 2017, vol. 118, no. 26, pp. 1–6. https://doi.org/10.1103/PhysRevLett.118.263202

    Article  Google Scholar 

  11. Robinson, J.M. et al., Crystalline optical cavity at 4 K with thermal noise limited instability and ultralow drift, Optica, 2019, vol. 6, no. 2, pp. 240–243. https://doi.org/10.1364/OPTICA.6.000240

    Article  ADS  Google Scholar 

  12. Callen, H.B. and Greene, R.F., On a theorem of irreversible thermodynamics, Phys. Rev., 1952, vol. 86, no. 5, pp. 702—710. https://doi.org/10.1103/PhysRev.86.702

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Greene, R.F., and Callen, H.B., On a Theorem of Irreversible Thermodynamics. II, Phys. Rev., 1952, vol. 88, no. 6, p. 1387. https://doi.org/10.1103/PhysRev.88.1387

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Levin, Y., Internal thermal noise in the LIGO test masses: A direct approach, Phys. Rev. D: Part., Fields, Gravit. Cosmol., 1998, vol. 57, no. 2, pp. 1–4. https://doi.org/10.1103/PhysRevD.57.659

    Article  ADS  Google Scholar 

  15. Buikema, A. et al., Sensitivity and performance of the Advanced LIGO detectors in the third observing run, Phys. Rev. D, 2020, vol. 102, no. 6, p. 62003. https://doi.org/10.1103/PhysRevD.102.062003

    Article  ADS  Google Scholar 

  16. Kessler, T., Legero, T., and Sterr, U., Thermal noise in optical cavities revisited, J. Opt. Soc. Am. B, 2011, vol. 29, no. 1, pp. 178–184. https://doi.org/10.1364/JOSAB.29.000178

    Article  ADS  Google Scholar 

  17. Chelkowski, S., Hild, S., and Freise, A., Prospects of higher-order Laguerre-Gauss modes in future gravitational wave detectors, Phys. Rev. D: Part., Fields, Gravit. Cosmol., 2009, vol. 79, no. 12, pp. 1–12. https://doi.org/10.1103/PhysRevD.79.122002

    Article  Google Scholar 

  18. Yan, L. et al., Ultrastable laser based on multi-cavity, 2019 Conference on Lasers Electro-Optics, CLEO 2019Proc., 2019, vol. 1, pp. 1–2. https://doi.org/10.1364/CLEO_AT.2019.JTu2A.66

  19. Thorpe, M.J., Leibrandt, D.R., Fortier, T.M., and Rosenband, T., Measurement and real-time cancellation of vibration-induced phase noise in a cavity-stabilized laser, Opt. Express, 2010, vol. 18, no. 18, p. 18744. https://doi.org/10.1364/OE.18.018744

    Article  ADS  Google Scholar 

  20. Zhadnov, N.O., Kudeyarov, K.S., Kryuchkov, D.S., Vishnyakova, G.A., and Khabarova, K.Y., Long 48-cm ULE cavities in vertical and horizontal orientations for Sr optical clock, arXiv: 2106.01887, 2021.

  21. Hong, T., Yang, H., Gustafson, E.K., Adhikari, R.X., and Chen, Y., Brownian thermal noise in multilayer coated mirrors, Phys. Rev. D: Part., Fields, Gravit. Cosmol., 2013, vol. 87, no. 8, pp. 1–27. https://doi.org/10.1103/PhysRevD.87.082001

    Article  Google Scholar 

  22. Gillespe, A. and Raab, F., Thermally excited vibrations of the mirrors of laser interferometer gravitational-wave detectors, Phys. Rev. D, 1995, vol. 52, no. 2, pp. 577–585. https://doi.org/10.1103/PhysRevD.52.577

    Article  ADS  Google Scholar 

  23. Ananiev, Yu.A., Opticheskie rezonatory i lazernye puchki (Optical Cavities and Laser Beams), Moscow: Nauka, 1990.

  24. Maeder, R.E., The Mathematica Programmer II, San Diego: Academic Press, 1996.

    MATH  Google Scholar 

  25. Mandelbrot, B.B. and Van Ness, J.W., Fractional Brownian motions, fractional noises and applications, SIAM Rev., 1968, vol. 10, no. 4, pp. 422–437. https://doi.org/10.1137/1010093

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research, project no. 19-32-90207.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. O. Zhadnov.

Additional information

Translated by A. Kazantsev

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhadnov, N.O., Kolachevsky, N.N. Partial Compensation of Thermal Noise in the Fundamental Mode of an Optical Cavity. Bull. Lebedev Phys. Inst. 48, 243–249 (2021). https://doi.org/10.3103/S1068335621080078

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068335621080078

Keywords:

Navigation