Skip to main content
Log in

Peculiar Properties of Charge Transfer in a Multilayered Film Structure upon Selective Pulsed Photoexcitation

  • Published:
Bulletin of the Lebedev Physics Institute Aims and scope Submit manuscript

Abstract—

Vectorial charge transfer upon pulsed laser excitation in three-layer Langmuir–Schäfer structures consisting of 100% photoactive molecules of porphyrin-fullerene dyad, phthalocyanine and polythiophene was studied. The behavior of the photovoltaic responses of the structures changed significantly upon selective optical excitation of monolayers. The mechanisms of the vectorial charge transfer in samples depending on the individual components photoexcitation of the structure are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. H. Lemmetyinen, N. V. Tkachenko, A. Efimov, and M. Niemi, “Photoinduced Intra- and Intermolecular Electron Transfer in Solutions and in Solid Organized Molecular Assemblies,” Phys. Chem. Chem. Phys. 13, 397 (2011). https://doi.org/10.1039/c0cp01106a

    Article  Google Scholar 

  2. G. Bottari, G. de la Torre, D. M. Guldi, and T. Torres, “Covalent and Noncovalent Phthalocyanine-Carbon Nanostructure Systems: Synthesis, Photoinduced Electron Transfer, and Application to Molecular Photovoltaics,” Chem. Rev. 110, 6768 (2010). https://doi.org/10.1021/cr900254z

    Article  Google Scholar 

  3. A. W. Hains, Z. Liang, M. A. Woodhouse, and B. A. Gregg, “Molecular Semiconductors in Organic Photovoltaic Cells,” Chem. Rev. 110, 6689 (2010). https://doi.org/10.1021/cr9002984

    Article  Google Scholar 

  4. T. M. Clarke and J. R. Durrant, “Charge Photogeneration in Organic Solar Cells,” Chem. Rev. 110, 6736 (2010). https://doi.org/10.1021/cr900271s

    Article  Google Scholar 

  5. LangmuirBlodgett Films, Ed. by G. Roberts (Plenum, New York, 1990). https://doi.org/10.1126/science.249.4966.305-a

    Book  Google Scholar 

  6. A. Troeger, V. Sgobba, and D. M. Guldi, “Multilayer Assembly for Solar Energy Conversion,” in Fullerenes and Other Carbon-Rich Nanostructures (Structure and Bonding), Ed. by J.-F. Nierengarten (Springer, Berlin, 2016). https://doi.org/10.1007/430_2013_112

    Book  Google Scholar 

  7. D. M. Guldi, I. Zilbermann, G. A. Anderson, K. Kordatos, M. Prato, R. Tafuro, and L. Valli, “Langmuir–Blodgett and Layer-by-Layer Films of Photoactive Fullerene–Porphyrin Dyads,” J. Mater. Chem. 14, 303 (2004). https://doi.org/10.1039/b309843e

    Article  Google Scholar 

  8. T. Konishi, A. Ikeda, and S. Shinkai, “Supramolecular Design of Photocurrent-Generating Devices Using Fullerenes at Modelling Artificial Photosynthesis,” Tetrahedron 61, 4881 (2005). https://doi.org/10.1016/j.tet.2005.03.053

    Article  Google Scholar 

  9. H. Neugebauer, M. A. Loi, C. Winder, N. S. Sariciftci, G. Cerullo, A. Gouloumis, P. Vazquez, and T. Torres, “Photophysics and Photovoltaic Device Properties of Phthalocyanine–Fullerene Dyad: Conjugated Polymer Mixture,” Solar Energy Mater. Sol. Cells 83, 201 (2004). https://doi.org/10.1016/j.solmat.2004.02.025

    Article  Google Scholar 

  10. N. V. Tkachenko, E. Vuorimaa, T. Kesti, A. S. Alekseev, A. Y. Tauber, P. Hynninen, and H. Lemmetyinen, “Vectorial Photoinduced Electron Transfer of Phytochlorin—[60]Fullerene Langmuir—Blodgett Films,” J. Phys. Chem. B 104, 6371 (2000). https://doi.org/10.1021/jp000235x

    Article  Google Scholar 

  11. T. Vuorinen, K. Kaunisto, N. V. Tkachenko, A. Efimov, H. Lemmetyinen, A. S. Alekseev, K. Hosomizu, and H. Imahori, “Photoinduced Electron Transfer in Langmuir—Blodgett Monolayers of Porphyrin—Fullerene Dyads,” Langmuir 21, 5383 (2005). https://doi.org/10.1021/la0503471

    Article  Google Scholar 

  12. A. S. Alekseev, A. V. Efimov, N. V. Tkachenko, P. A. Saltykov, and H. Lemmetyinen, “Interlayer Photoinduced Electron Transfer in Langmuir—Blodgett Films Based on Porphyrin and Phthalocyanine Derivatives,” Bull. Lebedev. Phys. Inst. 35, 118 (2008). https://doi.org/10.3103/S1068335608040064

    Article  ADS  Google Scholar 

  13. A. S. Alekseev, N. V. Tkachenko, A. Y. Tauber, P. H. Hynninen, H. Stubb, R. Osterbacka, and H. Lemmetyinen, “Vectorial Photoinduced Electron Transfer in Alternate Langmuir—Blodgett Films of Phytochlorin—[60]Fullerene Dyad and Regioregular Poly(3-Hexylthiophene),” Chem. Phys. 275, 243 (2002). https://doi.org/10.1016/S0301-0104(01)00515-8

    Article  Google Scholar 

  14. M. E. El-Khouly, O. Ito, P. M. Smith, and F. D’Souza, “Intermolecular and Supramolecular Photoinduced Electron Transfer Processes of Fullerene—Porphyrin/Phthalocyanine Systems,” J. Phochem. Photobiol. C 5, 79 (2004). https://doi.org/10.1016/j.jphotochemrev.2004.01.003

    Article  Google Scholar 

  15. Y. Araki, R. Chitta, A. S. D. Sandanayaka, K. Langenwalter, S. Gadde, M. E. Zandler, O. Ito, and F. D’Souza, “Self-Assembled Supramolecular Ferrocene-Fullerene Dyads and Triad: Formation and Photoinduced Electron Transfer,” J. Phys. Chem. C 112, 2222 (2008). https://doi.org/10.1021/jp077699g

    Article  Google Scholar 

  16. H. Imahori, N. V. Tkachenko, V. Vehmanen, K. Tamaki, H. Lemmetyinen, Y. Sakata, and S. Fukuzumi, “An Extremely Small Reorganization Energy of Electron Transfer in Porphyrin—Fullerene Dyad,” J. Phys. Chem. A 105, 1750 (2001). https://doi.org/10.1021/jp003207n

    Article  Google Scholar 

  17. H. Imahori and S. Fukuzumi, “Porphyrin- and Fullerene—Based Molecular Photovoltaic Devices,” Adv. Funct. Mater. 14, 525 (2004). https://doi.org/10.1002/adfm.200305172

    Article  Google Scholar 

  18. T. Vuorinen, K. Kaunisto, V. Chukharev, N. V. Tkachenko, A. Efimov, and H. Lemmetyinen, “Kinetics of Photoinduced Electron Transfer in Polythiophene—Porphyrin—Fullerene Molecular Films,” J. Phys. Chem. B 110, 19515 (2006). https://doi.org/10.1021/jp063076b

    Article  Google Scholar 

  19. K. Takahashi, B. Shan, Xi. Xu, Sh. Yang, T. Koganezawa, D. Kuzuhara, N. Aratani, M. Suzuki, Q. Miao, and H. Yamada, “Engineering Thin Films of a Tetrabenzoporphyrin toward Efficient Charge-Carrier Transport: Selective Formation of a Brickwork Motif,” Appl. Mater. Interf. 9, 8211 (2017). https://doi.org/10.1021/acsami.6b13988

    Article  Google Scholar 

  20. M. Ikonen, A. Y. Sharonov, N. Tkachenko, and H. Lemmetyinen, “The Photovoltage Signals of Bacteriorhodopsin in Langmuir—Blodgett Films with Different Molecular Orientations,” Adv. Mater. Opt. Electron. 2, 115 (1993). https://doi.org/10.1002/amo.860020304

    Article  Google Scholar 

  21. M. Ikonen, A. Y. Sharonov, N. Tkachenko, and H. Lemmetyine, “The Kinetics of Charges in Dry Bacteriorhodopsin Langmuir—Blodgett Films – an Analysis and Comparison of Electrical and Optical Signals,” Adv. Mater. Opt. Electron. 2, 211 (1993). https://doi.org/10.1002/amo.860020502

    Article  Google Scholar 

  22. H. Lehtivuori, T. Kumpulainen, A. Efimov, H. Lemmetyinen, A. Kira, H. Imahori, and N. V. Tkachenko, “Photoinduced Electron Transfer in Langmuir—Blodgett Monolayers of Double-Linked Phthalocyanine—Fullerene Dyads,” J. Phys. Chem. C 112, 9896 (2008). https://doi.org/10.1021/jp8026918

    Article  Google Scholar 

  23. K. Kaunisto, T. Vuorinen, H. Vahasalo, V. Chukharev, N. V. Tkachenko, A. Efimov, A. Tolkki, H. Lehtivuori, and H. Lemmetyinen, “Photoinduced Electron Transfer and Photocurrent in Multicomponent Organic Molecular Films Containing Oriented Porphyrin—Fullerene Dyad,” J. Phys. Chem. C 112, 10256 (2008). https://doi.org/10.1021/jp8003008

    Article  Google Scholar 

  24. P. Vivo, K. Kaunisto, A. S. Alekseev, O. Pekkola, A. Tolkki, V. Chukharev, and H. Lemmetyinen, “Vectorial Photoinduced Electron Transfer in Multicomponent Film Systems of Poly(3-Hexylthiophene), Porphyrin—Fullerene Dyad, and Perylenetetracarboxidiimide,” Photochem. Photophys. Sci. 9, 1212 (2010). https://doi.org/10.1039/c0pp00180e

    Article  Google Scholar 

  25. A. Efimov, P. Vainiotalo, N. V. Tkachenko, and H. Lemmetyinen, “Efficient Synthesis of Highly Soluble Doubly-Bridged Porphyrin—Fullerene Dyad,” J. Porph. Phthalocyan. 7, 610 (2003). https://doi.org/10.1142/S1088424603000768

    Article  Google Scholar 

  26. A. S. Alekseev, N. V. Tkachenko, A. V. Efimov, and H. Lemmetyinen, “Photoinduced Vectorial Electron Transfer in Multilayered Langmuir—Blodgett Films of Porphyrin and Phtalocyanine Derivatives,” Russ. J. Phys. Chem. A 84, 1230 (2010). https://doi.org/10.1134/S0036024410070253

    Article  Google Scholar 

  27. P. Vivo, A. S. Alekseev, K. Kaunisto, O. Pekkola, A. Tolkki, V. Chukharev, A. Efimov, P. Ihalainen, J. Peltonen, and H. Lemmetyinen, “Photoinduced Electron Transfer in Thin Films of Porphyrin—Fullerene Dyad and Perylenetetracarboxidiimide,” Phys. Chem. Chem. Phys. 12, 12525 (2010). https://doi.org/10.1039/c004539j

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Alekseev.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alekseev, A.S., Ivanov, A.B., Saltykov, P.A. et al. Peculiar Properties of Charge Transfer in a Multilayered Film Structure upon Selective Pulsed Photoexcitation. Bull. Lebedev Phys. Inst. 47, 357–363 (2020). https://doi.org/10.3103/S1068335620110020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068335620110020

Keywords:

Navigation