Skip to main content
Log in

Fatou’s Theorem for A(z)-Analytic Functions

  • Published:
Russian Mathematics Aims and scope Submit manuscript

Abstract

We consider \(A(z)\)-analytic functions in case when \(A(z)\) is anti-analytic function. This paper investigates the behavior near the boundary of the derivative of the function, \(A(z)\)-analytic inside the \(A(z)\)-lemniscate and with a bounded change of it at the boundary. Thus, this paper introduces the complex Lipschitz condition for \(A(z)\)-analytic functions and proves Fatou’s theorem for \(A(z)\)-analytic functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. U. Srebro and E. H. Yakubov, “μ-Homeomorphisms,” Contemp. Math. 211, 473–479 (1997). https://doi.org/10.1090/conm/211/02837

    Article  MATH  Google Scholar 

  2. V. Gutlyanskii, V. Ryazanov, U. Srebro, and E. Yakubov, The Beltrami Equation, Developments in Mathematics, Vol. 26 (Springer, New York, 2011). https://doi.org/10.1007/978-1-4614-3191-6

  3. B. V. Boyarskii, “Homeomorphic solutions to Beltrami systems,” Dokl. Akad. Nauk SSSR 102, 661–664 (1955).

    MathSciNet  Google Scholar 

  4. B. V. Boyarskii, “Generalized solutions of a system of differential equations of first order and of elliptic type with discontinuous coefficients,” Mat. Sb. (N.S.) 43 (4), 451–503 (1957).

  5. L. Ahlfors, Lectures on Quasiconformal Mappings (Springer, Toronto, 1966).

    MATH  Google Scholar 

  6. I. N. Vekua, Generalized Analytical Functions (Nauka, Moscow, 1988).

    Google Scholar 

  7. A. Sadullaev and N. M. Zhabborov, “On a class of A-analytic functions,” Zh. Sib. Fed. Univ. Ser. Mat. Fiz. 9, 374–383 (2016). https://doi.org/10.17516/1997-1397-2016-9-3-374-383

    Article  MATH  Google Scholar 

  8. A. E. Salimova, “A version of the Malliavin–Rubel theorem on entire functions of exponential type with zeros near the imaginary axis,” Russ. Math. 66, 37–45 (2022). https://doi.org/10.3103/S1066369X22080072

    Article  MathSciNet  MATH  Google Scholar 

  9. U. Yu. Jurayeva, “Theorems of the Phragmén–Lindelöf type for biharmonic functions,” Russ. Math. 66, 33–55 (2022). https://doi.org/10.3103/S1066369X22100097

    Article  MathSciNet  MATH  Google Scholar 

  10. N. M. Zhabborov and T. U. Otaboev, “Analog of integral Cauchy formula for A-analytic function,” Uzb. Mat. Zh., No. 4, 50–59 (2016).

  11. N. M. Zhabborov, T. U. Otaboev, and Sh. Ya. Khursanov, “The Schwarz inequality and the Schwarz formula for A-analytic functions,” Sovrem. Mat. Fundam. Napravleniya 64, 637–649 (2018). https://doi.org/10.22363/2413-3639-2018-64-4-637-649

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. M. Zhabborov or B. E. Husenov.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhabborov, N.M., Husenov, B.E. Fatou’s Theorem for A(z)-Analytic Functions. Russ Math. 67, 9–16 (2023). https://doi.org/10.3103/S1066369X23070101

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1066369X23070101

Keywords:

Navigation