Skip to main content
Log in

Performance Efficiency of the Polishing of Polymer Optical Materials

  • INVESTIGATION OF MACHINING PROCESSES
  • Published:
Journal of Superhard Materials Aims and scope Submit manuscript

Abstract

As a result of studying the mechanism of polishing the polymer optical materials with disperse systems composed of micro- and nanoparticles of polishing powders, it has established that the energy of sludge and wear particles during the resonant transfer of energy from the disperse phase particles of a polishing disperse system to a treated surface and backward is inversely proportional to the spectral separation between them. It has been shown that the energies of sludge and wear particles are decreased during the polishing of polymer materials with a disperse system of nanopowders by 5 time with an increase in the spectral separation from 27 to 78 cm–1 and from 17 to 24 cm–1, respectively. When polishing is performed with the disperse system of micropowders, their energies are decreased by 2–5 times with an increase in the spectral separation from 8 to 95 cm–1 and from 16 to 57 cm–1. When the spectral separation between a treated material and a polishing powder is decreased, the volumes of sludge and wear particles and, correspondingly, the polishing efficiency and grows alongside with the intensity of wear on the disperse phase particles of the disperse system. It has been found that the polishing efficiency strongly depends on the efficiency of the Forster resonant energy transfer and grows with a decrease in the product of the ratios between the vibration frequencies of molecular moieties on the surface of polishing powder particles and the treated surface and an increase in the ratio between the lifetimes of treated surface clusters and clusters of polishing powder particles in an excited state. It has been shown that the results of theoretical calculations on the performance efficiency of polishing the optical materials coincides with experimental results with a deviation of 1–8%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Filatov, Y.D., Polishing of precision surfaces of optoelectronic device elements made of glass, sitall, and optical and semiconductor crystals: A review, J. Superhard Mater., 2020, vol. 42, no. 1, pp. 30–48.

    Article  Google Scholar 

  2. Filatov, O.Yu., Sidorko, V.I., Kovalev, S.V., Filatov, Y.D., and Vetrov, A.G., Material removal rate in polishing anisotropic monocrystalline materials for optoelectronics, J. Superhard Mater., 2016, vol. 38, no. 2, pp. 123–131.

    Article  Google Scholar 

  3. Filatov, O.Yu., Sidorko, V.I., Kovalev, S.V., Filatov, Y.D., and Vetrov, A.G., Polishing substrates of single crystal silicon carbide and sapphire for optoelectronics, Funct. Mater., 2016, vol. 23, no. 1, pp. 104–110.

    Article  CAS  Google Scholar 

  4. Filatov, Yu.D., Filatov, A.Yu., Syrota, O.O., Yashchuk, V.P., Monteil, G., Heisel, U., and Storchak, M., The influence of tool wear particles scattering in the contact zone on the workpiece surface microprofile formation in polishing quartz, J. Superhard Mater., 2010, vol. 32, no. 6, pp. 415–422.

    Article  Google Scholar 

  5. Filatov, O.Yu., Sidorko, V.I., Kovalev, S.V., Filatov, Yu.D., and Vetrov, A.G., Polished surface roughness of optoelectronic components made of monocrystalline materials, J. Superhard Mater., 2016, vol. 38, no. 3, pp. 197–206.

    Article  Google Scholar 

  6. Suratwala, T.I., Materials Science and Technology of Optical Fabrication, Hoboken: Wiley, 2018.

    Book  Google Scholar 

  7. Sato, N., Aoyama, Y., Yamanaka, J., Toyotama, A., and Okuzono, T., Particle adsorption on hydrogel surfaces in aqueous media due to van der Waals attraction, Sci. Rep., 2017, vol. 7, 6099.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lin, G., Guo, D., Xie, G., Jia, Q., and Pan, G., In situ observation of colloidal particle behavior between two planar surfaces, Colloids Surf., A, 2015, vol. 482, pp. 656–661.

    Article  CAS  Google Scholar 

  9. Filatov, Yu.D., Mechanism of surface microrelief formation during glass treatment, Sverkhtverd. Mater., 1991, vol. 13, no. 5, pp. 63–67.

    Google Scholar 

  10. Filatov, Yu.D. and Rogov, V.V., A cluster model of mechanism of silica-containing material fatigue wear in polishing. Part 1, Sverkhtverd. Mater., 1994, vol. 16, no. 3, pp. 40–43.

    Google Scholar 

  11. Filatov, Yu.D., Polishing of aluminosilicate materials with tools with bound polishing powder, Sverkhtverd. Mater., 2001, vol. 23, no. 3, pp. 32–42.

    Google Scholar 

  12. Filatov, Y.D., Filatov, O.Y., Monteil, G., Heisel, U., and Storchak, M.G., Bound-abrasive grinding and polishing of surfaces of optical materials, Opt. Eng., 2011, vol. 50, no. 6, 063401.

  13. Cardullo, R.A., Principles of non-radiative FRET: The spectroscopic ruler, Microsc. Anal., 2002, vol. 88, pp. 19–21.

    Google Scholar 

  14. Wang, Yu. and Wang Lihong, V., Forster resonance energy transfer photoacoustic microscopy, J. Biomed. Opt., 2012, vol. 17, no. 8, 086007.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Egorova, A.V., Leonenko, I.I. Aleksandrova, D.I., Skripinets, Yu.V., and Antonovich, V.P., Non-radiative transfer of electronic excitation energy from the Sm(III) complex to the cyanine dye Cy5, Vestn. Odess. Nats. Univ. Khim., 2015, vol. 20, no. 3 (55), pp. 47–55.

  16. Liu, F., Rodina, A.V., Yakovlev, D.R., Golovatenko, A.A., Greilich, A., Vakhtin, E.D., Susha, A., Rogach, A.L., Kusraev, Y.G., and Bayer, M., Förster energy transfer of dark excitons enhanced by a magnetic field in an ensemble of CdTe colloidal nanocrystals, Phys. Rev. B, 2015, vol. 92, 125403.

    Article  Google Scholar 

  17. Poddubny, A.N. and Rodina, A.V., Nonradiative and radiative forster energy transfer between quantum dots, J. Exp. Theor. Phys., 2016, vol. 122, no. 3, pp. 531–538.

    Article  CAS  Google Scholar 

  18. Zabolotskii, A.A., Resonance energy transfer between a spherical nanoparticle and a J-aggregate, Optoelectron. Instrum. Data Process., 2017, vol. 53, no. 3, pp. 81–88.

    Article  Google Scholar 

  19. Mikhailov, T.N., Evropeitsev, E.A., Belyaev, K.G., Toropov, A.A., Rodina, A.V., Golovatenko, A.A., Ivanov, S.V., Pozina, G., and Shubina, T.V., Förster energy transfer in arrays of epitaxial CdSe/ZnSe quantum dots involving bright and dark excitons, Phys. Solid State, 2018, vol. 60, no. 8, pp. 1590–1594.

    Article  CAS  Google Scholar 

  20. Jones, G.A. and Bradshaw, D.S., Resonance energy transfer: From fundamental theory to recept applications, Front. Phys., 2019, vol. 7, 100.

    Article  Google Scholar 

  21. Khrebtov, A.I., Reznik, R.R., Ubyivovk, E.V., Litvin, A.P., Skurlov, I.D., Parfenov, P.S., Kulagina, A.S., Danilov, V.V., and Cirlin, G.E., Nonradiative energy transfer in hybrid nanostructures with varied dimensionality, Semiconductors, 2019, vol. 53, no. 9, pp. 1258–1261.

    Article  CAS  Google Scholar 

  22. Singldinger, A., Gramlich, M., Gruber, C., Lampe, C., and Urban, A.S., Nonradiative energy transfer between thickness-controlled halide perovskite nanoplatelets, ACS Energy Lett., 2020, vol. 5, pp. 1380–1385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Abeywickrama, Ch., Premaratne, M., and Andrews, D.L., Analysis of Förster resonance energy transfer (FRET) in the vicinity of a charged metallic nanospere via nonlocal, Proc. SPIE, Nanophotonics VIII, 2020, 113451B.

  24. Cortes, C.L. and Jacob, Z., Fundamental figures of merit for engineering Förster resonance energy transfer, Opt. Express, 2018, vol. 26, no. 15, pp. 19371–19387.

    Article  CAS  PubMed  Google Scholar 

  25. Gordon, F., Elcoroaristizabal, S., and Ryder, A.G., Modelling Förster resonance energy transfer (FRET) using anisotropy resolved multi-dimensional emission spectroscopy (ARMES), Biochim. Biophys. Acta, Gen. Subj., 2021, vol. 1865, no. 2, 129770.

    Article  CAS  PubMed  Google Scholar 

  26. Du, M., Martinez-Martinez, L.A., Ribeiro, R.F., Hu, Z., Menon, V., and Yuen-Zhou, J., Theory for polariton-assisted remote energy transfer, Chem. Sci., 2018, vol. 9, pp. 6659–6669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhong, X., Chervy, T., Zhang, L., Thomas, A., George, J., Genet, C., Hutchison, J.A., and Ebbesen, T.W., Energy transfer between spatially separated entangled molecules, Angew. Chem., Int. Ed., 2017, vol. 56, no. 31, pp. 9034–9038.

    Article  CAS  Google Scholar 

  28. Dovzhenko, D., Lednev, M., Mochalov, K., Vaskan, I., Rakovich, Yu., and Nabiev, I., Polariton-assisted manipulation of energy relaxation pathways: Donor–acceptor role reversal in a tuneable microcavity, Chem. Sci., 2021, vol. 12, pp. 12794–12805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nabiev, I., Strong light-matter coupling for optical switching through the fluorescence and FRET control, J. Phys.: Conf. Ser., 2021, vol. 2058, 012001.

    Google Scholar 

  30. Filatov, Y.D., Sidorko, V.I., Boyarintsev, A.Y., Kovalev, S.V., and Kovalev, V.A., Transfer energy in the interaction of an optical surface with a polishing disperse system, J. Superhard Mater., 2022, vol. 44, no. 2, pp. 117–126.

    Article  Google Scholar 

  31. Serova, V.N., Polimernye opticheskie materialy (Polymer Optical Materials), St. Petersburg: Nauchnye Osnovy i Tekhnologii, 2011.

  32. Mathur, V. and Sharma, K., Thermal response of polystyrene/poly methyl methacrylate (PS/PMMA) polymeric blends, Heat Mass Transfer, 2016, vol. 52, pp. 2901–2911.

    Article  CAS  Google Scholar 

  33. Guide to the identification of microplastics by FTIR and Raman spectroscopy, Plast. Massy, 2020, nos. 7–8, pp. 23–27.

  34. Eissa, M.F., Effect of transferred electronic energy density on optical, electrical and structural properties of polyallyl-diglycol carbonate (CR-39) polymer, J. Macromol. Sci., Part B, 2014, vol. 53, no. 3, pp. 529–540.

    CAS  Google Scholar 

  35. Abdul-Kader, A.M., Zaki, M.F., and El-Badry Basma, A., Modified the optical and electrical properties of CR-39 by gamma ray irradiation, J. Radiat. Res. Appl. Sci., 2014, vol. 7, no. 3, pp. 286–291.

    Article  Google Scholar 

  36. Zhang, H.Q., Jin, Y., and Qiu1, Y., The optical and electrical characteristics of PMMA film prepared by spin coating method, IOP Conf. Ser.: Mater. Sci. Eng., 2015, vol. 87, pp. 1–5.

    Google Scholar 

  37. Ashry, A.H., Abou-Leila, M., and Abdalla, A.M., Detection efficiency of alpha particles in CR-39 nuclear track detector: Experimental study, Adv. Sci., Eng. Med., 2012, vol. 4, no. 4, pp. 341–344.

    Article  CAS  Google Scholar 

  38. Filatov, Y.D., Sidorko, V.I., Kovalev, S.V., and Kovalev, V.A., Effect of the rheological properties of a dispersed system on the polishing indicators of optical glass and glass ceramics, J. Superhard Mater., 2021, vol. 43, no. 1, pp. 65–73.

    Article  Google Scholar 

  39. Filatov, Y.D., Sidorko, V.I., Kovalev, S.V., and Kovalev, V.A., Effect of interaction between polishing powder particles and a treated material on polishing characteristics of optical surfaces, J. Superhard Mater., 2021, vol. 43, no. 4, pp. 296–302.

    Article  Google Scholar 

  40. Filatov, Yu.D., Diamond polishing of crystalline materials for optoelectronics, J. Superhard Mater., 2017, vol. 39, no. 6, pp. 427–433.

    Article  Google Scholar 

  41. Filatov, Yu.D., Sidorko, V.I., Filatov, A.Yu., Yashuk, V.P., Heisel, W., and Storchak, M., Surface quality control in diamond abrasive finishing, in Optical Measurement Systems for Industrial Inspection VI, Proc. SPIE, 2009, vol. 7389, 73892O.

    Article  Google Scholar 

  42. Filatov, Yu.D., Sidorko, V.I., Filatov, O.Yu., Kovalev, S.V., Heisel, U., and Storchak, M., Surface roughness in diamond abrasive finishing, J. Superhard Mater., 2009, vol. 31, no. 3, pp. 191–195.

    Article  Google Scholar 

  43. Filatov, Yu. D., Yashchuk, V. P., Filatov, A. Yu., Heisel, U., Storchak, M., and Monteil, G., Assessment of surface roughness and reflectance of nonmetallic products upon diamond abrasive finishing, J. Superhard Mater., 2009, vol. 31, no. 5, pp. 338–346.

    Article  Google Scholar 

  44. Babitha, K.K., Sreedevi, A., Priyanka, K.P., et al., Structural characterization and optical studies of CeO2 nanoparticles synthesized by chemical precipitation, Indian J. Pure Appl. Phys., 2015, vol. 53, pp. 596–603.

    Google Scholar 

  45. Fang, J.F., Xuan, Y.M., and Li, Q., Preparation of polystyrene spheres in different particle sizes and assembly of the PS colloidal crystals, Sci. China: Technol. Sci., 2010, vol. 53, no. 11, pp. 3088–3093.

    Article  CAS  Google Scholar 

  46. Hadi Al-Kadhemy, M.F., Rasheed, Z.S., and Salim, S.R., Fourier transform infrared spectroscopy for irradiation coumarin doped polystyrene polymer films by alpha ray, J. Radiat. Res. Appl. Sci., 2016, vol. 9, no. 3, pp. 321–331.

    Article  Google Scholar 

  47. Luo, Q., Zeng, S., Shu, Y., Fu, Z., Zhaoc, H., and Su, S., A novel green process for tannic acid hydrolysis using an internally sulfonated hollow polystyrene sphere as catalyst, RSC Adv., 2018, vol. 8, pp. 17151–17158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Herman, V., Takacs, H., Duclairoir, F., Renault, O., Tortai, J.H., and Viala, B., Core double-shell cobalt/graphene/polystyrene magnetic nanocomposites synthesized by in situ sonochemical polymerization, RSC Adv. J. Name, 2015, no. 63, pp. 51371–51381.

  49. Analiz polimernykh kompozitsionnykh materialov (Analysis of Polymer Composite Materials), Romanova, N.V., Shafigullin, L.N., Gumerov, I.F., and Gumerov, M.I., Eds., Naberezhnye Chelny: Kazan. Fed. Univ., 2017.

  50. Aziz, Sh.B., Abdullah, O.Gh., Hussein, Ah.M., and Ahmed, H.M., From insulating pmma polymer to conjugated double bond behavior: Green chemistry as a novel approach to fabricate small band gap polymers, Polymers, 2017, vol. 9, no. 11, 626.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Tommasini, F.J., da Cunha Ferreira, L., Tienne, L.G.P., de Oliveira Aguiarb, V., da Silva, M.H.P., da Mota Rocha, L.F., and de Fátima Vieira Marquesb, M., Poly (methyl methacrylate)–SiC nanocomposites prepared through in situ polymerization, Mater. Res., 2018, vol. 21, no. 6, 20180086.

    Article  Google Scholar 

  52. Sayyah, S.M., El-Shafiey, Z.A., Barsoum, B.N., and Khaliel, A.B., Infrared spectroscopic studies of poly(methyl methacrylate) doped with a new sulfur-containing ligand and its cobalt(II) complex during γ-radiolysis, Appl. Polym. Sci., 2003, vol. 91, no. 3, pp. 1937–1950.

    Article  Google Scholar 

  53. Al-Jobouri, H.A., Jber, N.R., Al-Shukrawi, A.H., and Hamid, M.K., Physiochemical properties of crystalline etch products for CR-39 track detector after α-particles irradiation, Adv. Appl. Sci. Res., 2013, vol. 4, no. 4, pp. 501–507.

    CAS  Google Scholar 

  54. Zaki, M.F., Elshaer, Y.H., and Taha, D.H., Studying the structural, optical, chemical and electrochemical etching changes of CR-39 for dosemetric applications, Radiat. Prot. Dosim., 2017, vol. 177, no. 3, pp. 272–279.

    Article  CAS  Google Scholar 

  55. Jain, R.K., Kumar, A., Chakraborty, R.N., ans Singh, B.K., FTIR spectra of UV induced CR-39 plastic detector, Proc. DAE-BRNS Symp. on Nucl. Phys., 2016, vol. 61, pp. 1006–1007.

  56. Yamauchi, T., Nakai, H., Somaki, Y., and Oda, K., Formation of CO2 gas and OH groups in CR-39 plastics due to gamma-ray and ions irradiation, Radiat. Meas., 2003, vol. 36, nos. 1–6, pp. 99–103.

    Article  CAS  Google Scholar 

  57. Filatov, Y.D., Sidorko, V.I., Boyarintsev, A.Y., Kovalev, S. V., Garachenko, V.V., and Kovalev, V.A., Effect of the spectroscopic parameters of the processed material and polishing powder on the parameters of polishing of optical surfaces, J. Superhard Mater., 2022, vol. 44, no. 1, pp. 37–45.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. D. Filatov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Glushachenkova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filatov, Y.D., Sidorko, V.I., Boyarintsev, A.Y. et al. Performance Efficiency of the Polishing of Polymer Optical Materials. J. Superhard Mater. 44, 358–367 (2022). https://doi.org/10.3103/S1063457622050021

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1063457622050021

Keywords:

Navigation