Skip to main content
Log in

Transfer Energy in the Interaction of an Optical Surface with a Polishing Disperse System

  • INVESTIGATION OF MACHINING PROCESSES
  • Published:
Journal of Superhard Materials Aims and scope Submit manuscript

Abstract

The study of the interaction mechanism of an optical surface with a polishing disperse system during polishing showed that the energy transfer between them occurs according to the Förster mechanism. With resonance energy transfer from the particles of the dispersed phase of the polishing system to the surface to be treated and from the material being processed to the particles of the polishing powder, with a decrease in the spectral separation between them, the energy of the sludge particles and wear particles decreases, and the energy transfer efficiency increases. The spectral separation was characterized by energy mismatch, 2.8–4.0 meV for sludge particles and 2.8–12.2 meV for wear particles. The spatial separation between the treated surface and polishing powder particles was estimated as the arithmetic mean deviation of the polished surface profile, 5.6–8.0 nm. A decrease in the spatial and spectral separation between the material being processed and polishing powder particles increases the size of sludge particles and wear particles, causing a deterioration in the roughness of optical surfaces. The results of a theoretical calculation of the productivity of polishing optical materials coincide with the experimental results with a deviation of 2–7%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Filatov, Yu.D., Modeling and experimental study of surfaces optoelectronic elements from crystal materials in polishing, in Simulation and Experiments of Material-Oriented Ultra-Precision Machining, Springer Tracts in Mechanical Engineering, Zhang, J. et al., Eds., Singapore: Springer, 2019, pp. 129–165.

    Google Scholar 

  2. Filatov, Yu.D., Polishing of precision surfaces of optoelectronic device elements made of glass, sitall, and optical and semiconductor crystals: A review, J. Superhard Mater., 2020, vol. 42, no. 1, pp. 30–48.

    Article  Google Scholar 

  3. Filatov, Yu.D., Sidorko, V.I., Kovalev, S.V., and Kovalev, V.A., Effect of the rheological properties of a dispersed system on the polishing indicators of optical glass and glass ceramics, J. Superhard Mater., 2021, vol. 43, no. 1, pp. 65–73.

    Article  Google Scholar 

  4. Filatov, Yu.D., Sidorko, V.I., Filatov, O.Yu., and Kovalev, S.V., Fizichni zasadi formoutvorennya pretsiziinikh poverkhon’ pid chas mekhanichnoi obrobki nemetalevikh materialiv: Monografiya (Physical Principles of Formation of Precise Surfaces during Mechanical Processing of Nonmetal Materials: Monograph), Kyiv: Naukova Dumka, 2017.

  5. Suratwala, T.I., Materials Science and Technology of Optical Fabrication, Hoboken, NJ: Wiley, 2018.

    Book  Google Scholar 

  6. Sato, N., Aoyama, Y., Yamanaka, J., Toyotama, A., and Okuzono, T., Particle adsorption on hydrogel surfaces in aqueous media due to van der Waals attraction, Sci. Rep., 2017, vol. 7, no. 6099, pp. 1–10.

    Article  Google Scholar 

  7. Lin, G., Guo, D., Xie, G., Jia, Q., and Pan, G., In situ observation of colloidal particle behavior between two planar surfaces, Colloids Surf., A, 2015, vol. 482, pp. 656–661.

    Article  CAS  Google Scholar 

  8. Khrebtov, A.I., Reznik, R.R., Ubyivovk, E.V., Litvin, A.P., Skurlov, I.D., Parfenov, P.S., Kulagina, A.S., Danilov, V.V., and Cirlin, G.E., Nonradiative energy transfer in hybrid nanostructures with varied dimensionality, Semiconductors, 2019, vol. 53, no. 9, pp. 1258–1261.

    Article  CAS  Google Scholar 

  9. Zabolotskii, A.A., Resonance energy transfer between a spherical nanoparticle and a J-aggregate, Avtometriya, 2017, vol. 53, no. 3, pp. 81–88.

    Google Scholar 

  10. Egorova, A.V., Leonenko, I.I., Aleksandrova, D.I., Skripinets, Yu.V., and Antonovich, V.P., Nonradiative transfer of electronic excitation energy from the Sm(III) complex to the cyanine dye Su5, Visn. Odes. Nats. Univ., Khim., 2015, vol. 20, no. 3 (55), pp. 47–55.

  11. Jones, G.A. and Bradshaw, D.S., Resonance energy transfer: From fundamental theory to recept applications, Front. Phys., 2019, vol. 7, 100.

    Article  Google Scholar 

  12. Singldinger, A., Gramlich, M., Gruber, C., Lampe, C., and Urban, A.S., Nonradiative energy transfer between thickness-controlled halide perovskite nanoplatelets, ACS Energy Lett., 2020, vol. 5, pp. 1380–1385.

    Article  CAS  Google Scholar 

  13. Wang, Y. and Wang, L.V., Forster resonance energy transfer photoacoustic microscopy, J. Biomed. Opt., 2012, vol. 17, no. 8, 086007.

    Article  Google Scholar 

  14. Abeywickrama, Ch., Premaratne, M., and Andrews, D.L., Analysis of Förster resonance energy transfer (FRET) in the vicinity of a charged metallic nanosphere via nonlocal optical response method, Proc. SPIE, 2020, vol. 11345, 113451B.

  15. Mikhailov, T.N., Evropeitsev, E.A., Belyaev, K.G., Toropov, A.A., Rodina, A.V., Golovatenko, A.A., Ivanov, S.V., Pozina, G., and Shubina, T.V., Förster energy transfer in arrays of epitaxial CdSe/ZnSe quantum dots involving bright and dark excitons, Phys. Solid State, 2018, vol. 60, no. 8, pp. 1590–1594.

    Article  CAS  Google Scholar 

  16. Liu, F., Rodina, A.V., Yakovlev, D.R., Golovatenko, A.A., Greilich, A., Vakhtin, E.D., Susha, A., Rogach, A.L., Kusraev, Y.G., and Bayer, M., Förster energy transfer of dark excitons enhanced by a magnetic field in an ensemble of CdTe colloidal nanocrystals, Phys. Rev. B, 2015, vol. 92, 125403.

    Article  Google Scholar 

  17. Poddubny, A.N. and Rodina, A.V., Nonradiative and radiative Förster energy transfer between quantum dots, J. Exp. Theor. Phys., 2016, vol. 122, no. 3, pp. 531–538.

    Article  CAS  Google Scholar 

  18. Cardullo, R.A., Principles of non-radiative FRET: The spectroscopic ruler, Microsc. Anal., 2002, vol. 88, pp. 19–21.

    Google Scholar 

  19. Yukhnovs’kii, I.R., Osnovi kvantovoi mekhaniki: Navchnii posibnik (Fundamentals of Quantum Mechanics: Manual), Kyiv: Libid’, 2002.

  20. Trachenko, K., Monserrat, B., Pickard, C.J., and Brazhkin, V.V., Speed of sound from fundamental physical constants, Sci. Adv., 2020, vol. 6, no. 41, 8662.

    Article  Google Scholar 

  21. Filatov, O.Yu., Sidorko, V.I., Kovalev, S.V., Filatov, Y.D., and Vetrov, A.G., Polishing substrates of single crystal silicon carbide and sapphire for optoelectronics, Funct. Mater., 2016, vol. 23, no. 1, pp. 104–110.

    Article  CAS  Google Scholar 

  22. Filatov, Yu.D., Filatov, A.Yu., Syrota, O.O., Yashchuk, V.P., Monteil, G., Heisel, U., and Storchak, M., The influence of tool wear particles scattering in the contact zone on the workpiece surface microprofile formation in polishing quartz, J. Superhard Mater., 2010, vol. 32, no. 6, pp. 415–422.

    Article  Google Scholar 

  23. Filatov, O.Yu., Sidorko, V.I., Kovalev, S.V., Filatov, Yu.D., and Vetrov, A.G., Polished surface roughness of optoelectronic components made of monocrystalline materials, J. Superhard Mater., 2016, vol. 38, no. 3, pp. 197–206.

    Article  Google Scholar 

  24. Balat-Pichelin, M., De Sousa Meneses, D., and Annaloro, J., Behavior and optical properties of Zerodur® at high temperatures, Infrared Phys. Technol., 2019, vol. 101, pp. 68–77.

    Article  Google Scholar 

  25. Doret, A., Pellerin, N., Allix, M., Pellerin, S., Léna, V., Perrigaud, K., and Massiot, D., Influence of alteration solutions on the chemical durability of the Zerodur® glass-ceramic: Structural investigation, Int. J. Appl. Ceram. Technol., 2014, vol. 12, no. 4, pp. 1–12.

    Google Scholar 

  26. Serova, V.N., Polimernye opticheskie materialy (Polymer Optical Materials), St. Petersburg: Nauchn. Osnovy Tekhnol., 2011.

  27. Kuvshinskii, M.V., Oreshkin, S.I., Popov, S.M., Rudenko, V.N., Yudin, I.S., Azarova, V.V., and Blagov, S.V., Tests of cryogenic FP-cavity with mirrors on different substrates, Appl. Phys., 2019, vol. 9, no. 230, pp. 1–12.

    Article  Google Scholar 

  28. Filatov, Yu.D., Diamond polishing of crystalline materials for optoelectronics, J. Superhard Mater., 2017, vol. 39, no. 6, pp. 427–433.

    Article  Google Scholar 

  29. Filatov, Yu.D., Sidorko, V.I., Filatov, A.Yu., Yashuk, V.P., Heisel, W., and Storchak, M., Surface quality control in diamond abrasive finishing, Proc. SPIE, 2009, vol. 7389, 73892O.

  30. Filatov, Yu.D., Sidorko, V.I., Filatov, O.Yu., Kovalev, S.V., Heisel, U., and Storchak, M., Surface roughness in diamond abrasive finishing, J. Superhard Mater., 2009, vol. 31, no. 3, pp. 191–195.

    Article  Google Scholar 

  31. Filatov, Yu.D., Yashchuk, V.P., Filatov, A.Yu., Heisel, U., Storchak, M., and Monteil, G., Assessment of surface roughness and reflectance of nonmetallic products upon diamond abrasive finishing, J. Superhard Mater., 2009, vol. 31, no. 5, pp. 338–346.

    Article  Google Scholar 

  32. Al-Kadhemy, M.F.H., Rasheed, Z.S., and Salim, S.R., Fourier transform infrared spectroscopy for irradiation coumarin doped polystyrene polymer films by alpha ray, J. Radiat. Res. Appl. Sci., 2016, vol. 9, no. 3, pp. 321–331.

    Article  CAS  Google Scholar 

  33. Babitha, K.K., Sreedevi, A., Priyanka, K.P., and Sabu, B., Structural characterization and optical studies of CeO2 nanoparticles synthesized by chemical precipitation, Indian J. Pure Appl. Phys., 2015, vol. 53, pp. 596–603.

    Google Scholar 

  34. Filatov, O.Yu., Sidorko, V.I., Kovalev, S.V., Filatov, Yu.D., and Vetrov, A.G., Material removal rate in polishing anisotropic monocrystalline materials for optoelectronics, J. Superhard Mater., 2016, vol. 38, no. 2, pp. 123–131.

    Article  Google Scholar 

  35. Filatov, Yu.D., Sidorko, V.I., Boyarintsev, A.Y., Kovalev, S.V., Garachenko, V.V., and Kovalev, V.A., Effect of the spectroscopic parameters of the processed material and polishing powder on the parameters of polishing of optical surfaces, J. Superhard Mater., 2022, vol. 44, no. 1, pp. 37–45.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. D. Filatov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Zhukova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filatov, Y.D., Sidorko, V.I., Boyarintsev, A.Y. et al. Transfer Energy in the Interaction of an Optical Surface with a Polishing Disperse System. J. Superhard Mater. 44, 117–126 (2022). https://doi.org/10.3103/S1063457622020058

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1063457622020058

Keywords:

Navigation