Skip to main content
Log in

Experimental Study on Fabricating Micro-Hole Arrays on CVD Diamond Film Using a Nanosecond Pulsed Laser

  • PRODUCTION, STRUCTURE, PROPERTIES
  • Published:
Journal of Superhard Materials Aims and scope Submit manuscript

Abstract

The increasing demand for micro-parts and miniaturization of devices has led to development of manufacturing micro-holes on different materials. In this study, micro-hole arrays were drilled on a CVD diamond film using a nanosecond pulsed laser. The effect of laser processing parameters, such as pulse width, scanning speed, and scanning times on the shape, size, and morphology of micro-holes was investigated. The entrance, exit, and cross-sectional dimensions and morphology of the micro-holes were examined. The results demonstrated that micro-hole arrays with an entrance diameter of 49.1–56.3 μm, exit diameter of 4.6–10.6 μm, and taper angle of less than 18.5° can be obtained using a nanosecond pulsed laser. It was found that pulse width has little effect on entrance diameter, however, with the increase of pulse width, the micro-hole exit diameter and depth increased, while the taper angle decreased. With the increase of laser scanning speed, the micro-hole entrance diameter decreased slightly, and there is little variation in micro-hole exit diameter and taper angle. The scanning times were found to have little effect on micro-hole entrance diameter. However, with the increase of scanning times, the micro-hole exit diameter increased and the taper angle decreased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.

Similar content being viewed by others

REFERENCES

  1. Fu, Y., Miyamoto, T., Natsu, W., Zhao, W., and Yu, Z., Study on influence of electrode material on hole drilling in micro-EDM, Procedia CIRP, 2016, vol. 42, pp. 516–520.

    Article  Google Scholar 

  2. Reddy, S., He, L., and Ramakrishana, S., Miniaturized-electroneurostimulators and self-powered/rechargeable implanted devices for electrical-stimulation therapy, Biomed. Signal Process. Contol, 2018, vol. 41, pp. 255–263.

    Article  Google Scholar 

  3. Hasan, M., Zhao, J., and Jiang, Z., A review of modern advancements in micro drilling techniques, J. Manuf. Process., 2017, vol. 29, pp. 343–375.

    Article  Google Scholar 

  4. Zhang, L., Tong, H., and Li, Y., Precision machining of micro tool electrodes in micro EDM for drilling array micro holes, Precis. Eng., 2015, vol. 39, pp. 100–106.

    Article  Google Scholar 

  5. Ren, Z.H., Zheng, X.H., An, Q.L., Wang, C.Y., and Chen, M., Tool breakage feature extraction in PCB micro hole drilling using vibration signals, Adv. Mater., 2012, vol. 497, pp. 126–131.

    Google Scholar 

  6. Rahman, Z., Das, A.K., and Chattopadhyaya, S., Microhole drilling through electrochemical processes: A review, Mater. Manuf. Process., 2008, vol. 33, no. 13, pp. 1379–1405.

    Article  CAS  Google Scholar 

  7. Aziz, M., Ohnishi, O., and Onikura, H., Novel micro deep drilling using micro long flat drill with ultrasonic vibration, Precis. Eng., 2012, vol. 36, no. 1, pp. 168–174.

    Article  Google Scholar 

  8. Ahn, Y. and Lee, S.H., Classification and prediction of burr formation in micro drilling of ductile metals, Int. J. Prod. Res., 2017, vol. 55, no. 17, pp. 4833–4846.

    Article  Google Scholar 

  9. Zhang, R., Li, W., Liu, Y., Wang, C., Wang, J., Yang, X., and Cheng, L., Machining parameter optimization of C/SiC composites using high power picosecond laser, Appl. Surf. Sci., 2015, vol. 330, pp. 321–331.

    Article  CAS  Google Scholar 

  10. Saxena, K.K., Qian, J., and Reynaerts, D., A review on process capabilities of electrochemical micromachining and its hybrid variants, Int. J. Mach. Tools Manuf., 2018, vol. 127, pp. 28–56.

    Article  Google Scholar 

  11. Elsiti, N.M., Noordin, M.Y., and Alkali, A.U., Fabrication of high aspect ratio micro electrode by using EDM, IOP Conf. Ser.: Mater. Sci. Eng., 2016, vol. 114, no. 1, 012046.

  12. Nitta, K., Inazawa, S., Okada, K., Nakajima, H., Nohira, T., and Hagiwara, R., Analysis of tungsten film electrodeposited from a ZnCl2–NaCl–KCl melt, Electrochim. Acta, 2017, vol. 53, no. 1, pp. 20–23.

    Article  CAS  Google Scholar 

  13. He, J.F., Guo, Z.N., Lian, H.S., Liu, J.W., Yao, Z., and Deng, Y., Experiments and simulations of micro-hole manufacturing by electrophoresis-assisted micro-ultrasonic machining, J. Mater. Process. Technol., 2019, vol. 264, pp. 10–20.

    Article  CAS  Google Scholar 

  14. Meijer, J., Laser beam machining (LBM), state of the art and new opportunities, J. Mater. Process. Technol., 2004, vol. 149, nos. 1–3, pp. 2–17.

    Article  Google Scholar 

  15. Mishra, S. and Yadava, V., Laser beam micromachining (LBMM)—A review, Opt. Laser Eng., 2015, vol. 73, pp. 89–122.

    Article  Google Scholar 

  16. Sui, T.Y., Cui, Y.X., Lin, B., and Zhang, D.W., Influence of nanosecond laser processed surface textures on the tribological characteristics of diamond films sliding against zirconia bioceramic, Ceram. Int., 2018, vol. 44, no. 18, pp. 23137–23144.

    Article  CAS  Google Scholar 

  17. Ito, S., Nagai, M., Matsumoto, T., Inokuma, T., and Tokuda, N., Self-separation of freestanding diamond films using graphite interlayers precipitated from C-dissolved Ni substrates, J. Cryst. Growth, 2017, vol. 470, pp. 104–107.

    Article  CAS  Google Scholar 

  18. Feng, W., Lu, W., Zhou, H., Yang, B., and Zuo, D., Surface characterization of diamond film tool grinding on the monocrystal sapphire under different liquid environments, Appl. Surf. Sci., 2016, vol. 387, pp. 784–789.

    Article  CAS  Google Scholar 

  19. Badzian, A., Diamond challenged by hard materials: A reflection on developments in the last decades, Mater. Chem. Phys., 2001, vol. 72, pp. 110–113.

    Article  CAS  Google Scholar 

  20. Jia, X., Huang, N., Guo, Y., Liu, L., Li, P., Zhai, Z., Yang, B., Yuan, Z., Shi, D., and Jiang, X., Growth behavior of CVD diamond films with enhanced electron field emission properties over a wide range of experimental parameters, J. Mater. Sci. Technol., 2018, vol. 34, no. 12, pp. 2398–2406.

    Article  Google Scholar 

  21. Xu, H., Zang, J., Tian, P., Wang, Y., Yu, Y., Lu, J., Xu, X., and Zhang, P., Rapid grinding CVD diamond films using corundum grinding wheels containing iron, Int. J. Refract. Met. Hard Mater., 2018, vol. 71, pp. 147–152.

    Article  CAS  Google Scholar 

  22. Sun, F.H., Zhang, Z.M., Chen, M., and Shen, H.S., Fabrication and application of high quality diamond-coated tools, J. Mater. Process. Technol., 2002, vol.129, nos. 1–3, pp. 435–440.

    Article  CAS  Google Scholar 

  23. Nazari, M., Hancock, B.L., Anderson, J., Hobart, K.D., Feygelson, T.I., Tadjer, M.J., Pate, B.B., Anderson, T.J., Piner, E.L., and Holtz, M.W., Optical characterization and thermal properties of CVD diamond films for integration with power electronics, Solid-State Electron., 2017, vol. 136, pp. 12–17.

    Article  CAS  Google Scholar 

  24. Yan, X., Wei, J., An, K., Zhao, Y., Liu, J., Chen, L., Hei, L., and Li, C., Quantitative study on graphitization and optical absorption of CVD diamond films after rapid heating treatment, Diamond Relat. Mater., 2018, vol. 87, pp. 267–273.

    Article  CAS  Google Scholar 

  25. Luo, D., Nakata, K., Fujishima, A., and Liu, S., Photochemistry and photo-electrochemistry on synthetic semiconducting diamond, J. Photochem. Photobiol., C, 2017, vol. 31, pp. 139–152.

    Article  CAS  Google Scholar 

  26. Ohfuji, H., Okuchi, T., Odake, S., Kagi, H., Sumiya, H., and Irifune, T., Micro-/nanostructural investigation of laser-cut surfaces of single- and polycrystalline diamonds, Diamond Relat. Mater., 2010, vol. 19, nos. 7–9, pp. 1040–1051.

    Article  CAS  Google Scholar 

  27. Windholz, R. and Molian, P. A., Nanosecond pulsed excimer laser machining of chemically vapour-deposited diamond and graphite: Part II. Analysis and modeling, J. Mater. Sci., 1998, vol. 33, no. 2, pp. 523–528.

    Article  CAS  Google Scholar 

  28. Strekalov, V.N., Konov, V.I., Kononenko, V.V., and Pimenov, S.M., Early stages of laser graphitization of diamond, Appl. Phys. A, 2003, vol. 76, no. 4, pp. 603–607.

    Article  CAS  Google Scholar 

  29. Picollo, F., Rubanov, S., Tomba, C., Battiato, A., Enrico, E., Perrat-Mabilon, A., Peaucelle, C., Tran Thi, T.N., Boarino, L., Gheeraert, E., and Olivero, P., Effects of high-power laser irradiation on sub-superficial graphitic layers in single-crystal diamond, Acta Mater., 2016, vol. 103, pp. 665–671.

    Article  CAS  Google Scholar 

  30. Butler-Smith, P.W., Axinte, D.A., Pacella, M., and Fay, M.W., Micro/nanometric investigations of the effects of laser ablation in the generation of micro-tools from solid CVD diamond structures, J. Mater. Process. Technol., 2013, vol. 213, no. 2, pp. 194–200.

    Article  Google Scholar 

  31. Lin, J.F., Lin, J.W., and Wei, P.J., Thermal analysis for graphitization and ablation depths of diamond films, Diamond Relat. Mater., 2006, vol. 15, no. 1, pp. 1–9.

    Article  CAS  Google Scholar 

  32. Guo, B., Zhao, Q., and Fang, X., Precision grinding of optical glass with laser micro-structured coarse-grained diamond wheels, J. Mater. Process. Technol., 2014, vol. 214, no. 5, pp. 1045–1051.

    Article  CAS  Google Scholar 

  33. Kononenko, T. V., Ralchenko, V.G., Vlasov, I.I., Garnov, S.V., and Konov, V.I., Ablation of CVD diamond with nanosecond laser pulses of UV–IR range, Diamond Relat. Mater., 1998, vol. 7, nos. 11–12, pp. 1623–1627.

    Article  CAS  Google Scholar 

  34. Kononenko, T.V., Komlenok, M.S., Pashinin, V.P., Pimenov, S.M., Konov, V.I., Neff, M., Romano, V., and Lüthy, W., Femtosecond laser microstructuring in the bulk of diamond, Diamond Relat. Mater., 2009, vol. 18, nos. 2–3, pp. 196–199.

    Article  CAS  Google Scholar 

  35. Odake, S., Ohfuji, H., Okuchi, T., Kagi, H., Sumiya, H., and Irifune, T., Pulsed laser processing of nano-polycrystalline diamond: A comparative study with single crystal diamond, Diamond Relat. Mater., 2009, vol. 18, nos. 5–8, pp. 877–880.

    Article  CAS  Google Scholar 

  36. Kononenko, T.V., Konov, V.I., Garnov, S.V., Klimentov, S.M., and Dausinger, F., Dynamics of deep short pulse laser drilling: Ablative stages and light propagation, Laser Phys., 2001, vol. 11, no. 3, pp. 343–351.

    CAS  Google Scholar 

  37. Marimuthu, S., Dunleavey, J., Liu, Y., Smith, B., Kiely, A., and Antar, M., Characteristics of hole formation during laser drilling of SiC reinforced aluminum metal matrix composites, J. Mater. Process. Technol., 2019, vol. 271, pp. 554–567.

    Article  CAS  Google Scholar 

  38. Hanon, M.M., Akman, E., Oztoprak, B.G., Gunes, M., Taha, Z.A., Hajim, K.I., Kacar, E., Gundogdu, O., and Demir, A., Experimental and theoretical investigation of the drilling of alumina ceramic using Nd:YAG pulsed laser, Opt. Laser Technol., 2012, vol. 44, no. 4, pp. 913–922.

    Article  CAS  Google Scholar 

  39. Mishra, S. and Yadava, V., Modeling of hole taper and heat affected zone due to laser beam percussion drilling, Mach. Sci. Technol., 2013, vol. 17, no. 2, pp. 270–291.

    Article  CAS  Google Scholar 

  40. Wu, M., Guo, B., Zhao, Q., He, P., Zeng, Z., and Zang. J., The influence of the ionization regime on femtosecond laser beam machining mono-crystalline diamond, Opt. Laser Technol., 2018, vol. 106, pp. 34–39.

    Article  CAS  Google Scholar 

  41. Li, L., Low, D.K.Y., Ghoreshi, M., and Crookall, J.R., Hole taper characterization and control in laser percussion drilling, CIRP Ann., 2002, vol. 51, no. 1, pp. 153–156.

    Article  Google Scholar 

  42. Zhang, Z., Zhang, Q., Wang, Q., Su, H., Fu, Y., and Xu, J., Investigation on the material removal behavior of single crystal diamond by infrared nanosecond pulsed laser ablation, Opt. Laser Technol., 2020, vol. 126, 106086

    Article  CAS  Google Scholar 

  43. Das, D.K. and Pollock, T.M., Femtosecond laser machining of cooling holes in thermal barrier coated CMSX4 superalloy, J. Mater. Process. Technol., 2009, vol. 209, nos. 15–16, pp. 5661–5668.

    Article  CAS  Google Scholar 

  44. Dou, J., Sun, Y., Xu, M., Cui, J., Mei, X., Wang, W., and Wang, X., Process research on micro-machining diamond microgroove by femtosecond laser, Integr. Ferroelectr., 2019, vol. 198, no. 1, pp. 9–19.

    Article  CAS  Google Scholar 

  45. Nawaz, S., Awan, M.B., Saeed, B., and Abbas, N., Experimental investigation of taper angle during millisecond laser drilling of 18CrNi8 steel under multiple parameters and defocused plane, Mater. Res. Express, 2019, vol. 6, no. 8, 086531.

    Article  CAS  Google Scholar 

Download references

Funding

The authors acknowledge the financial support of the National Natural Science Foundation of China (NSFC) with Grant nos. 51775118 and 51275096.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fenglin Zhang.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yanling Liao, Zhang, F., Wang, P. et al. Experimental Study on Fabricating Micro-Hole Arrays on CVD Diamond Film Using a Nanosecond Pulsed Laser. J. Superhard Mater. 43, 248–260 (2021). https://doi.org/10.3103/S1063457621040067

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1063457621040067

Keywords:

Navigation