Skip to main content
Log in

Detonation Nanodiamonds as Adsorbents for Uranium and Thorium

  • PRODUCTION, STRUCTURE, PROPERTIES
  • Published:
Journal of Superhard Materials Aims and scope Submit manuscript

Abstract

The sorption properties of carbon nanomaterials with different contents of the fraction of detonation nanodiamonds (DND) with respect to 238U and 232Th radionuclides were studied. The rates of U and Th adsorption-desorption in aqueous media were established. The correlation relationships between the parameters of the surface structure of samples and their sorption ability were determined. The sorption material with a maximally high DND content was found to have the highest irreversible U and Th adsorption rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Hem, J.D., Study and Interpretation of the Chemical Characteristics of Natural Water: Water Supply Paper 2254, Washington, DC: US Dep. Interior, 1985. https://pubs.usgs.gov/wsp/wsp2254/pdf/wsp2254a.pdf.

  2. Guidelines for Drinking-Water Quality, Geneva: World Health Org., 2011, 4th ed.

  3. Wang, X.L., Li, Y., Huang, J., Zhou, Y.Z., Li, B. L., and Liu, D.B., Efficiency and mechanism of adsorption of low concentration uranium in water by extracellular polymeric substances, J. Environ. Radioact., 2019, vol. 197, pp. 81–89.

    Article  CAS  Google Scholar 

  4. Vereschagin, A.L., Kudryashova, O.B., Stepkina, M.Y., Balakhnina, A.V., and Petrov, E.A., Use of nanodiamond for absorption of aerosol particles, Fullerenes, Nanotubes Carbon Nanostruct., 2020, vol. 28, no. 1, pp. 14–19.

    Article  CAS  Google Scholar 

  5. Lanin, S.N., Platonova, S.A., Vinogradov, A.E., Lanina, K.S., Nesterenko, E.P., and Nesterenko, P.N., Comparative study of different polar adsorbents for adsorption of water-soluble vitamins, Adsorption, 2020, vol. 26, pp. 339–348.

    Article  CAS  Google Scholar 

  6. Dubyago, I.P., Shugalei, I.V., Shagova, D.A., L’vov, S.N., Dolmatov, V.Yu., Krasnogorskii, I.I., Balashov, L.D., Veretennikova, M.V., Tselinskii, I.V., and Ilyushina, T.M., Ultrafine carbon materials as antioxidant and anticancer drugs, Usp. Sovrem. Estestvozn., 2005, no. 8, pp. 78–79.

  7. Lai, H., Stenzel, M.H., and Xiao, P., Surface engineering and applications of nanodiamonds in cancer treatment and imaging, Int. Mater. Rev., 2020, vol. 65, no. 4, pp. 189–225.

    Article  CAS  Google Scholar 

  8. Schrand, A.M., Hens, S.A.C., and Shenderova, O.A., Nanodiamond particles: Properties and perspectives for bioapplications, Crit. Rev. Solid State Mater. Sci., 2009, vol. 34, nos. 1–2, pp. 18–74.

    Article  CAS  Google Scholar 

  9. Kazakov, A.G., Garashchenko, B.L., Yakovlev, R.Y., Vinokurov, S.E., Kalmykov, S.N., and Myasoedov, B.F., An experimental study of sorption/desorption of selected radionuclides on carbon nanomaterials: A quest for possible applications in future nuclear medicine, Diamond Relat. Mater., 2020, vol. 104, art. ID 107752.

  10. Lanin, S.N., Platonova, S.A., Vinogradov, A.E., Lanina, K.S., Nesterenko, E.P., and Nesterenko, P.N., Comparative study of different polar adsorbents for adsorption of water soluble vitamins, Adsorption, 2020, vol. 26, no. 3, pp. 339–348.

    Article  CAS  Google Scholar 

  11. Dolmatov, V.Yu., Sushchev, V.G., and Marchukov, V.A., RF Patent 2109683, Byull. Izobret., 1998, no. 12.

  12. Titaeva, N.A., Yadernaya geokhimiya (Nuclear Geochemistry), Moscow: Mosk. Gos. Univ., 1992.

  13. Dobrolyubskaya, T.S., Luminescent method, in Analiticheskaya khimiya urana (Analytical Chemistry of Uranium), Moscow: Nauka, 1962, pp. 143–165.

  14. Kuznetsov, V.I. and Savvin, V.B., Sensitive photometric determination of thorium using Arsenazo III regent, Radiokhimiya, 1961, vol. 3, no. 1, pp. 79–86.

    CAS  Google Scholar 

  15. Rachkova, N.G. and Shuktomova, I.I., Sorption of U(VI) and Ra from aqueous solutions with analcime-containing rock, Radiochemistry, 2010, vol. 52, pp. 76–80.

    Article  CAS  Google Scholar 

  16. Dolmatov, V.Yu., Detonation-synthesis nanodiamonds: Synthesis, structure, properties and applications, Russ. Chem. Rev., 2007, vol. 76, no. 4, p. 339.

    Article  CAS  Google Scholar 

  17. Dolmatov, V.Yu., Kulakova, I.I., Myllymäki, V., Vehanen, A., Panova, A.N., and Voznyakovskii, A.A., IR spectra of detonation nanodiamonds modified during the synthesis, J. Superhard Mater., 2014, vol. 36, no. 5, pp. 344–357.

    Article  Google Scholar 

  18. Vatanpour, V., Salehi, E., Sahebjamee, N., and Ashrafi, M., Novel chitosan/polyvinyl alcohol thin membrane adsorbents modified with detonation nanodiamonds: Preparation, characterization, and adsorption performance, Arab. J. Chem., 2020, vol. 13, no. 1, pp. 1731–1740.

    Article  CAS  Google Scholar 

  19. Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., and Sing, K.W., Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem., 2015, vol. 87, nos. 9–10, pp. 1051–1069.

    Article  CAS  Google Scholar 

  20. Li, F., Yang, Z., Weng, H., Chen, G., Lin, M., and Zhao, C., High efficient separation of U(VI) and Th(IV) from rare earth elements in strong acidic solution by selective sorption on phenanthroline diamide functionalized graphene oxide, Chem. Eng. J., 2018, vol. 332, pp. 340–350.

    Article  CAS  Google Scholar 

  21. Tripathi, A. and Melo, J.S., Self-assembled biogenic melanin modulated surface chemistry of biopolymers-colloidal silica composite porous matrix for the recovery of uranium, J. Appl. Polym. Sci., 2019, vol. 136, no. 5, art. ID 46937.

    Article  Google Scholar 

  22. Shushkov, D.A., Shuktomova, I.I., Rachkova, N.G., and Harja, M., Porosity and sorption properties of zeolites synthesized from coal fly ash, Vestn. Inst. Geol., Komi Nauchn. Tsentra, Ural. Otd., Ross. Akad. Nauk, 2018, no. 2, pp. 32–37.

  23. Rachkova, N.G. and Shuktomova, I.I., Sorption of uranium, radium, and thorium by analcime-containing rock and sorbents based on plant tissue, Russ. J. Appl. Chem., 2010, vol. 83, no. 4, pp. 620–624.

    Article  CAS  Google Scholar 

Download references

Funding

This study was carried out within state task no. 0414-2018-0002 “Mechanisms of the Biogenic Migration of Radionuclides and Regularities of the Occurrence of Long-Term Consequences Induced in Plants and Animals under the Conditions of Chronic Radiation and Chemical Exposure.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Yu. Dolmatov.

Additional information

Translated by E. Glushachenkova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karmanov, A.P., Dolmatov, V.Y., Kocheva, L.S. et al. Detonation Nanodiamonds as Adsorbents for Uranium and Thorium. J. Superhard Mater. 43, 203–212 (2021). https://doi.org/10.3103/S1063457621030059

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1063457621030059

Keywords:

Navigation