Skip to main content
Log in

Comparative Study of the Mechanical and Tribological Characteristics of Fe–Cu–Ni–Sn Composites with Different CrB2 Content under Dry and Wet Friction

  • PRODUCTION, STRUCTURE, PROPERTIES
  • Published:
Journal of Superhard Materials Aims and scope Submit manuscript

Abstract

The structure, phase composition, hardness, and elasticity modulus of sintered Fe–Cu–Ni–Sn–CrB2 composites and their tribological properties under dry and wet friction have been studied by X-ray diffraction, scanning electron microscopy, microindentation, and tribological testing. The obtained results have demonstrated that the microstructure and mechanical and tribological properties of these composites depend on the CrB2 additive content. The Fe–Cu–Ni–Sn–CrB2 composites incorporate the α-Fe, γ-Fe, and Cu phases and a certain fraction of the crystalline Cu9NiSn3, NiSn3, and CrB2 phases. The hardness and elasticity modulus of these composites are almost independent of the friction medium (dry or wet), and the friction force and the wear rate are variable. The Fe–Cu–Ni–Sn–CrB2 composites are superior to the Fe–Cu–Ni–Sn composites in their mechanical and tribological properties. The addition of 2 wt % of CrB2 to the 51Fe–32Cu–9Ni–8Sn composite has decreased the friction force from 220 to 170 mN and the wear rate from 7.41 × 10–2 to 3.41 × 10–2 mm3/(N m) under dry friction and, respectively, from 200 to 140 mN and from 8.19 × 10–2 to 4.10 × 10–2 mm3/(N m) under wet friction. A further growth in the CrB2 content in the composites leads to an increase in the wear rate. The mechanism of increase in the wear resistance of the composite containing 2 wt % of CrB2 as compared to the initial composite implies the formation of a more fine-grained structure with an optimal combination of the hardness and elasticity modulus. The Fe–Cu–Ni–Sn–CrB2 composites can be used as a material for the matrix of composite diamond-containing materials subjected to strong wear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Konstanty, J., Powder Metallurgy Diamond Tools, Amsterdam: Elsevier, 2005.

    Google Scholar 

  2. Borowiecka-Jamrozek, J. and Konstanty, J., Microstructure and mechanical properties a new iron-base material used for the fabrication of sintered diamond tools, Adv. Mater. Res., 2014, vol. 1052, pp. 520–523.

    Article  CAS  Google Scholar 

  3. Borowiecka-Jamrozek, J., Konstanty, J., and Lachowski, J., The application of a ball-milled Fe–Cu–Ni powder mixture to fabricate sintered diamond tools, Arch. Found. Eng., 2018, vol. 18, no. 1, pp. 5–8.

    CAS  Google Scholar 

  4. Zaitsev, A.A., Sidorenko, D.A., Levashov, E.A., Kurbatkina, V.V., Rupasov, S.I., Andreev, V.A., and Sevast’yanov, P.V., Development and application of the Cu–Ni–Fe–Sn based dispersion hardened bond for cutting tools of superhard materials, J. Superhard Mater., 2012, vol. 34, no. 4, pp. 270–280.

    Article  Google Scholar 

  5. Mechnyk, V.A., Diamond–Fe–Cu–Ni–Sn composite materials with predictable stable characteristics, Mater. Sci., 2013, vol. 48, no. 5, pp. 591–600.

    Article  CAS  Google Scholar 

  6. Mechnik, V.A., Production of diamond–(Fe–Cu–Ni–Sn) composites with high wear resistance, Powder Metall. Met. Ceram., 2014, vol. 52, nos. 9–10, pp. 577–587.

    Article  CAS  Google Scholar 

  7. Mechnik, V.A., Bondarenko, N.A., Kuzin, N.O., and Lyashenko, B.A., The role of structure formation in forming the physicomechanical properties of composites of the diamond–(Fe–Cu–Ni–Sn) system, J. Frict. Wear, 2016, vol. 37, no. 4, pp. 377–384.

    Article  Google Scholar 

  8. Zaitsev, A.A., Sidorenko, D.A., Levashov, E.A., Kurbatkina, V.V., Andreev, V.A., Rupasov, S.I., and Sevast’yanov, P.V., Diamond tools in metal bonds dispersion-strengthened with nanosized particles for cutting highly reinforced concrete, J. Superhard Mater., 2010, vol. 32, no. 6, pp. 423–431.

  9. Sidorenko, D.A., Zaitsev, A.A., Kirichenko, A.N., Levashov, E.A., Kurbatkina, V.V., Loginov, P.A., Rupasov, S.I., and Andreev, V.A., Interaction of diamond grains with nanosized alloying agents in metal–matrix composites as studied by Raman spectroscopy, Diamond Relat. Mater., 2013, vol. 38, pp. 59–62.

  10. Bondarenko, N.A., Zhukovskii, A.N., and Mechnik, V.A., Analysis of the basic theories of sintering of materials. 1. Sintering under isothermal and nonisothermal conditions (a review), Sverkhtverd. Mater., 2006, vol. 28, no. 6, pp. 3–17.

  11. Kolodnits’kyi, V.M. and Bagirov, O.E., On the structure formation of diamond containing composites used in drilling and stone working tools (a review), J. Superhard Mater., 2017, vol. 39, no. 1, pp. 1–17.

    Article  Google Scholar 

  12. Zhukovskii, A.N., Maistrenko, A.L., Mechnik, V.A., and Bondarenko, N.A., The stress-strain state of the bonding around the diamond grain exposed to normal and tangent loading components, Part 1: Model, Trenie Iznos, 2002, vol. 23, no. 2, pp. 146–153.

    Google Scholar 

  13. Zhukovskii, A.N., Maistrenko, A.L., Mechnik, V.A., and Bondarenko, N.A., Stress-strain state of the matrix around the diamond grain exposed to the normal and tangent loading components, Part 2: Analysis, Trenie Iznos, 2002, vol. 23, no. 4, pp. 393–396.

    CAS  Google Scholar 

  14. Aleksandrov, V.A., Alekseenko, N.A., and Mechnik, V.A., Study of force and energy parameters in cutting granite with diamond disc saws, Sov. J. Superhard Mater., 1984, vol. 6, no. 6, pp. 46–52.

    Google Scholar 

  15. Aleksandrov, V.A., Zhukovskii, A.N., and Mechnik, V.A., Temperature field and wear of inhomogeneous diamond wheel at convective heat exchange, Trenie Iznos, 1994, vol. 15, no. 1, pp. 27–35.

    Google Scholar 

  16. Aleksandrov, V.A., Zhukovskii, A.N., and Mechnik, V.A., Temperature field and wear of heterogeneous diamond wheel under conditions of convectional heat transfer, Part 2, Trenie Iznos, 1994, vol. 15, no. 2, pp. 196–201.

    Google Scholar 

  17. Dutka, V.A., Kolodnitskyi, V.M., Zabolotnyi, S.D., Sveshnikov, I.A., and Lukash, V.A., Simulation of the temperature level in rock destruction elements of drilling bits, Sverkhtverd. Mater., 2004, vol. 26, no. 2, pp. 66–73.

  18. Dutka, V.A., Kolodnitskyi, V.M., Mel’nichuk, O.V., and Zabolotnyi, S.D., Mathematical model for thermal processes occurring in the interaction between rock destruction elements of drilling bits and rock mass, Sverkhtverd. Mater., 2005, vol. 27, no. 1, pp. 67–77.

  19. Hodge, A.M., Wang, Y.M., and Barbee, T.W., Large-scale production of nano-twinned, ultrafine-grained copper, Mater. Sci. Eng., A, 2006, vol. 429, nos. 1–2, pp. 272–276.

    Article  CAS  Google Scholar 

  20. Shaw, L.L., Villegas, J., Huang, J.-Y., and Chen, S., Strengthening via deformation twinning in a nickel alloy, Mater. Sci. Eng., A, 2008, vol. 480, nos. 1–2, pp. 75–83.

    Article  CAS  Google Scholar 

  21. Aleksandrov, V.A. and Mechnik, V.A., Effect of heat conduction of diamonds and heat-exchange coefficient on contact temperature and wear of cutting disks, Trenie Iznos, 1993, vol. 14, no. 6, pp. 1115–1117.

    CAS  Google Scholar 

  22. Sveshnikov, I.A. and Kolodnitskyi, V.N., Optimization of the hard alloy cutter arrangement in the drilling bit body, Sverkhtverd. Mater., 2006, vol. 28, no. 4, pp. 70–75.

    Google Scholar 

  23. Nitkiewicz, Z. and Świerzy, M., Tin influence on diamond–metal matrix hot pressed tools for stone cutting, J. Mater. Process. Technol., 2006, vol. 175, nos. 1–3, pp. 306–315.

    Article  CAS  Google Scholar 

  24. Bondarenko, M.O., Mechnik, V.A., and Suprun, M.V., Shrinkage and shrinkage rate behavior in Cdiamond–Fe–Cu–Ni–Sn–CrB2 system during hot pressing of pressureless-sintered compacts, J. Superhard Mater., 2009, vol. 31, no. 4, pp. 232–240.

    Article  Google Scholar 

  25. Dinaharan, I., Sathiskumar, R., and Murugan, N., Effect of ceramic particulate type on microstructure and properties of copper matrix composites synthesized by friction stir processing, J. Mater. Res. Technol., 2016, vol. 5, no. 4, pp. 302–316.

    Article  CAS  Google Scholar 

  26. Shabani, M., Paydar, M.H., Zamiri, R., Goodarzi, M., and Moshksar, M.M., Microstructural and sliding wear behavior of SiC particle reinforced copper matrix composites fabricated by sintering and sinter forging processes, J. Mater. Res. Technol., 2016, vol. 5, no. 1, pp. 5–12.

    Article  CAS  Google Scholar 

  27. Gevorkyan, E., Mechnik, V., Bondarenko, N., Vovk, R., Lytovchenko, S., Chishkala, V., and Melnik, O., Peculiarities of obtaining diamond–(Fe–Cu–Ni–Sn) hot pressing, Funct. Mater., 2017, vol. 24, pp. 31–45.

    Article  CAS  Google Scholar 

  28. Mechnik, V.A., Bondarenko, N.A., Dub, S.N., Kolodnitskyi, V.M., Nesterenko, Yu.V., Kuzin, N.O., Zakiev, I.M., and Gevorkyan, E.S., A study of microstructure of Fe–Cu–Ni–Sn and Fe–Cu–Ni–Sn–VN metal matrix for diamond containing composites, Mater. Charact., 2018, vol. 146, pp. 209–216.

    Article  CAS  Google Scholar 

  29. Mechnik, V.A., Bondarenko, N.A., Kolodnitskyi, V.M., Zakiev, V.I., Zakiev, I.M., Storchak, M., Dub, S.N., and Kuzin, N.O., Physico-mechanical and tribological properties of Fe–Cu–Ni–Sn and Fe–Cu–Ni–Sn–VN nanocomposites obtained by powder metallurgy methods, Tribol. Ind., 2019, vol. 41, no. 2, pp. 188–198.

    Article  Google Scholar 

  30. Mechnik, V.A., Bondarenko, N.A., Kolodnitskyi, V.M., Zakiev, V.I., Zakiev, I.M., Ignatovich, S.R., Dub, S.N., and Kuzin, N.O., Formation of Fe–Cu–Ni–Sn–VN nanocrystalline matrix by vacuum hot pressing for diamond-containing composite. Mechanical and tribological properties, J. Superhard Mater., 2019, vol. 41, no. 6, pp. 388–401.

    Article  Google Scholar 

  31. Mechnik, V.A., Bondarenko, N.A., Kolodnitskyi, V.M., Zakiev, V.I., Zakiev, I.M., Ignatovich, S.R., Dub, S.N., and Kuzin, N.O. Effect of vacuum hot pressing temperature on the mechanical and tribological properties of the Fe–Cu–Ni–Sn–VN composites, Powder Metall. Met. Ceram., 2020, vol. 58, nos. 11–12, pp. 679–691.

    Article  CAS  Google Scholar 

  32. Mechnik, V.A., Bondarenko, N.A., Kuzin, N.O., and Gevorkian, E.S., Influence of the addition of vanadium nitride on the structure and specifications of a diamond–(Fe–Cu–Ni–Sn) composite system, J. Frict. Wear, 2018, vol. 39, no. 2, pp. 108–113.

    Article  Google Scholar 

  33. Han, Y., Zhang, S., Bai, R., Zhou, H., Su, Z., Wu, J., and Wang, J., Effect of nano-vanadium nitride on microstructure and properties of sintered Fe–Cu-based diamond composites, Int. J. Refract. Met. Hard Mater., 2020, vol. 91, art. ID 105256.

    Article  CAS  Google Scholar 

  34. Mechnyk, V.A., Regularities of structure formation in diamond–Fe–Cu–Ni–Sn–CrB2 systems, Mater. Sci., 2013, vol. 49, no. 1, pp. 93–101.

    Article  CAS  Google Scholar 

  35. Mechnik, V.A., Effect of hot recompaction parameters on the structure and properties of diamond–(Fe–Cu–Ni–Sn–CrB2) composites, Powder Metall. Met. Ceram., 2014, vol. 52, nos. 11–12, pp. 709–721.

    Article  CAS  Google Scholar 

  36. Mechnik, V.A., Bondarenko, N.A., Kolodnitskyi, V.M., Zakiev, V.I., Zakiev, I.M., Ignatovich, S.R., and Yutskevych, S.S., Mechanical and tribological properties of Fe–Cu–Ni–Sn materials with different amounts of CrB2 used as matrices for diamond-containing composites, J. Superhard Mater., 2020, vol. 42, no. 4, pp. 251–263.

    Article  Google Scholar 

  37. Kraus, W. and Nolze, G., POWDER CELL—a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns, J. Appl. Crystallogr., 1996, vol. 29, pp. 301–303.

    Article  CAS  Google Scholar 

  38. Selected Powder Diffraction Data for Education Straining (Search Manual and Data Cards), Swarthmore, PA: Int. Centre Diffraction Data, 1988.

  39. Zakiev, I. and Aznakayev, E., Micro Gamma: the device for the estimation of physico-mechanical properties of materials, JALA: J. Assoc. Lab. Autom., 2002, vol. 7, no. 5, pp. 44–45.

    Google Scholar 

  40. Storchak, M., Zakiev, I., and Träris, L., Mechanical properties of subsurface layers in the machining of the titanium alloy Ti10V2Fe3Al, J. Mech. Sci. Technol., 2018, vol. 32, pp. 315–322.

    Article  Google Scholar 

  41. Vasylyev, M.O., Mordyuk, B.M., Voloshko, S.M., Zakiyev, V.I., Burmak, A.P., and Pefti, D.V., Hardening of surface layers of Cu–39Zn–1Pb brass at holding and high-frequency impact deformation in liquid nitrogen, Metallofiz. Nov. Tekhnol., 2019, vol. 41, no. 11, pp. 1499–1517.

    Article  CAS  Google Scholar 

  42. Oliver, W.C. and Pharr, G.M., An improved for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res., 1992, vol. 7, no. 6, pp. 1564–1583.

    Article  CAS  Google Scholar 

  43. Firstov, S.A., Ignatovich, S.R., and Zakiev, I.M., Size effect in the micro- and nanoindentation and its compensation with regard for the specific features of initial contact, Strength Mater., 2009, vol. 41, no. 2, pp. 147–155.

    Article  Google Scholar 

  44. Vasylyev, M.A., Mordyuk, B.N., Sidorenko, S.I., Voloshko, S.M., Burmak, A.P., Kruhlov, I.O., and Zakiev, V.I., Characterization of ZrN coating low-temperature deposited on the preliminary Ar+ ions treated 2024 Al-alloy, Surf. Coat. Technol., 2019, vol. 361, pp. 413–424.

    Article  CAS  Google Scholar 

  45. Zakiev, V., Markovsky, A., Aznakayev, E., Zakiev, I., and Gursky, E., Micro-mechanical properties of bio-materials, Proc. SPIE, 2005, vol. 5959.

  46. Okipnyi, I.B., Maruschak, P.O., Zakiev, V.I., and Mocharskyi, V.S., Fracture mechanism analysis of the heat-resistant steel 15Kh2MFA(II) after laser shock-wave processing, J. Failure Anal. Prev., 2014, vol. 14, no. 5, pp. 668–674.

    Article  Google Scholar 

  47. Zakiev, I., Gogotsi, G.A., Storchak, M., and Zakiev, V., Glass fracture during micro-scratching, Surfaces, 2020, vol. 3, no. 2, pp. 211–224.

    Article  CAS  Google Scholar 

  48. Fuertes, V., Cabrera, M.J., Seores, J., Muñoz, D., Fernández, J.F., and Enríquez, E., Enhanced wear resistance of engineered glass-ceramic by nanostructured self-lubrication, Mater. Des., 2019, vol. 168, art. 107623.

    Article  CAS  Google Scholar 

  49. ASTM G99-17: Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus, West Conshohocken, PA: ASTM Int., 2017.

  50. ASTM G171-03: Standard Test Method for Scratch Hardness of Materials Using a Diamond Stylus, West Conshohocken, PA: ASTM Int., 2017.

  51. Dub, S.N., Milman, Yu.V., Lotsko, A.N., and Belous, A.N., The anomalous behavior of Al–Cu–Fe quasicrystal during nanoindentation, J. Mater. Sci. Lett., 2001, vol. 20, no. 11, pp. 1043–1045.

    Article  CAS  Google Scholar 

  52. Azhazha, V.M., Borisova, S.S., Dub, S.N., Malykhin, S.V., Pugachov, A.T., Merisov, B.A., and Khadzhay, G.Ya., Mechanical behavior of Ti–Zr–Ni quasicrystals during nanoindentation, Phys. Solid State, 2005, vol. 47, no. 12, pp. 2262–2267.

    Article  CAS  Google Scholar 

  53. Radionenko, O., Kindrachuk, M., Tisov, O., and Kryzhanovskyi, A., Features of transition modes of friction surfaces with partially regular microrelief, Aviation., 2018, vol. 22, no. 3, pp. 86–92.

    Article  Google Scholar 

  54. Perepl’otchikov, E.F., Vasyliv, Kh.B., Vynar, V.A., Ryabtsev, I.O., and Zakiev, V.I., Elevation of the wear resistance of low-alloy structural steel by plasma-powder surfacing with alloys based on iron, chromium, and nickel, Mater. Sci., 2018, vol. 54, pp. 378–386.

    Article  CAS  Google Scholar 

  55. Ivshchenko, L.I., Tsyganov, V.V., and Zakiev, I.M., Features of the wear of tribojoints under three-dimensional loading, J. Frict. Wear, 2011, vol. 32, no. 1, pp. 8–16.

    Article  Google Scholar 

  56. Kusumoto, K., Shimizu, K., Efremenko, V.G., Hara, H., Shirai, M., Ito, J., Hatate, M., Gaqi, Y., and Purba, R.H., Three body type abrasive wear characteristics of multi-component white cast irons, Wear, 2019, vols. 426–427, pp. 122–127.

    Article  CAS  Google Scholar 

Download references

Funding

This study was performed within state financed research projects in compliance with the coordination plans of the Ministry of Education and Science of Ukraine (state registration no. 0120U100105).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. A. Mechnik or V. M. Kolodnitskyi.

Additional information

Translated by E. Glushachenkova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mechnik, V.A., Bondarenko, N.A., Kolodnitskyi, V.M. et al. Comparative Study of the Mechanical and Tribological Characteristics of Fe–Cu–Ni–Sn Composites with Different CrB2 Content under Dry and Wet Friction. J. Superhard Mater. 43, 52–64 (2021). https://doi.org/10.3103/S1063457621010044

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1063457621010044

Keywords:

Navigation