Skip to main content
Log in

Role of Materials Science in Increasing the Efficiency of a Rock-Crushing Tool Equipped with WC–Co Cemented Carbide Inserts: A Review

  • PRODUCTION, STRUCTURE, PROPERTIES
  • Published:
Journal of Superhard Materials Aims and scope Submit manuscript

Abstract

A concept is proposed for increasing the efficiency of a rock-crushing tool. The concept uses basics of the thermodynamics of open systems. Based on the proposed concept, the following promising approaches to increasing the efficiency of a rock-crushing tool are identified: Co-phase doping, creating gradient constraints in the volume of the rock-breaking component, and formation of mesostructures in sintered hard alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Artsimovich, G.V., Mekhanicheskie osnovy sozdaniya porodorazrushayushchego burovogo instrumenta (Mechanics of Rock Cutting Drilling Tools), Novosibirsk: Nauka, 1985.

  2. Artsimovich, G.V., Kochkarev, A.V., and Mishnaevskii, L.L., Teoriya razrusheniya mnogoletnemerzlykh i khrupkikh neodnorodnykh porod pri burenii (The Theory of Destruction of Permafrost and Brittle Heterogenic Minerals during Drilling), Yakutsk: Yakut. Nauchn. Tsentr, Sib. Otd., Akad. Nauk SSSR, 1991.

  3. Vozdvizhenskii, B.I., Mel’nichuk, I.P., and Peshalov, Yu.A., Fiziko-mekhanicheskie svoistva gornykh porod i vliyanie ikh na effektivnost’ bureniya (Physical-Mechanical Properties of Mineral Rocks and Their Effect on Drilling Efficiency), Moscow: Nedra, 1990.

  4. Sulakshin, S.S., Razrushenie gornykh porod pri burenii (Destruction of Mineral Rocks during Drilling), Tomsk: Tomsk. Gos. Politekh. Univ., 2009.

  5. Sidorko, A.A. and Shestakov, S.I., Automated modeling of contact interaction of hard alloy indenters with destructible mineral rock at high impact speeds, in Porodorazrushayushchii i metalloobrabatyvayushchii insturment: tekhnika i tekhnologiya ego izgotovleniya i primeneniya (Rock Cutting and Metal Processing Tools: Production Equipment and Technology, Application), Kyiv: Inst. Sverkhtverd. Mater. im. V.N. Bakulya, Nats. Akad. Nauk Ukr., 2001, pp. 89–91.

  6. Dutka, V.A., Kolodnitskii, V.M., Zabolotnyi, S.D., Sveshnikov, I.A., and Lukash, V.A., Simulation of the temperature level in rock destruction elements of drilling bits, Sverkhtverd. Mater., 2004, no. 2, pp. 66–73.

  7. Larsen-Basse, J., Perrott, C.M., and Robinson, P.M., Abrasive wear of tungsten carbide—cobalt composites. I. Rotary drilling tests, Mater. Sci. Eng., 1974, vol. 13, pp. 83–91.

    Article  CAS  Google Scholar 

  8. Larsen-Basse, J., Effect of composition, microstructure, and service conditions on the wear of cemented carbides, JOM, 1983, vol. 35, pp. 35–42.

    Article  CAS  Google Scholar 

  9. Beste, U., Hartzell, T., Engqvist, H., and Axen, N., Surface damage on cemented carbide rock-drill buttons, Wear, 2001, vol. 249, pp. 324–329.

    Article  CAS  Google Scholar 

  10. Beste, U. and Jacobson, S., A new view of the deterioration and wear of WC/Co cemented carbide rock drill buttons, Wear, 2008, vol. 264, pp. 1129–1141.

    Article  CAS  Google Scholar 

  11. Beste, U., Jacobson, S., and Hogmark, S., Rock penetration into cemented carbide drill buttons during rock drilling, Wear, 2008, vol. 264, pp. 1142–1151.

    Article  CAS  Google Scholar 

  12. Lisovsky, A.F. and Linenko-Mel’nikov, Yu.P., Formation of defects in hard alloy insertion of sintered diamond coring bit, Sverkhtverd. Mater., 2004, no. 4, pp. 84–90.

  13. Jonsson, H., Wear of cemented carbide bits during percussive drilling in magnetite-rich ore, Pranseeber.Pulvermet., 1976, vol. 2, pp. 108–134.

    Google Scholar 

  14. Ivanova, V.S. and Shanyavskii, A.A., Kolichestvennaya graktografiya. Ustalostnoe razrushenie (Quantitative Fractography: Fatigue Destruction), Chelyabinsk: Metallurgiya, 1988.

  15. Kabaldin, Yu.G., Structural-energetic approach to wear of hard alloys, Mashinostroenie, 1986, no. 4, pp. 127–131.

  16. Lebedev, A.A. and Chechin, E.V., Selecting allowable stresses in computing structures according to the static strength criterion, Strength Mater., 1980, vol. 12, pp. 435–438.

    Article  Google Scholar 

  17. Ivanova, V.S., Bakanin, A.S., Bunin, I.Zh., and Oksogoev, A.A., Sinergetika i fraktaly v materialovedenii (Synergetics and Fractals in Material Science), Moscow: Nauka, 1994.

  18. Gapeev, N.N., Join classification of minerals by drillability, Vzryvnoe Delo, 1964, no. 56/13, pp. 5–10.

  19. Brookes, K.J.A., World Directory and Handbook of Hardmetals and Hard Materials, East Barnet: Int. Carbide Data, 1992, 5th ed.

  20. Taypin, N.V., Iznosostoikost’ kompozitsionnykh almazosoderzhashchikh materialov dlya burovogo instrumenta (Wear Resistance of Composite Diamond-Containing Materials for Drilling Tools), Kiev: Naukova Dumka, 1983.

  21. Lisovsky, A.F., Gracheva, T.E., and Kulakovsky, V.N., Composition and properties of (Ti,W)C–WC–Co sintered carbides alloyed by MMI-process, Int. J. Refract. Met. Hard Mater., 1995, vol. 13, no. 6, pp. 379–383.

    Article  CAS  Google Scholar 

  22. Vasel, C.H., Krawitz, A.D., Drake, E.F., Kenik, E.A., et al., Binder deformation in WC–(Co,Ni) cemented carbide composites, Metall. Trans. A., 1985, vol. 16, pp. 2309–2327.

    Article  Google Scholar 

  23. Liu, M., Huang, X., Duan, S., et al., Diffraction contrast study of microstructure and deformation process of WC–Co cemented carbide, Int. J. Refract. Met. Hard Mater., 1983, vol. 2, no. 3, pp. 129–132.

    Google Scholar 

  24. Sigl, L.S. and Exner, H.E., Experimental study of the mechanics of fracture in WC–Co alloys, Metall. Trans. A, 1987, vol. 18, nos. 7–12, pp. 1299–1308.

    Article  Google Scholar 

  25. Schmid, H.G., Mari, D., Benoit, W., and Bonjour, C., The mechanical behavior of cemented carbides at high temperatures, Mater. Sci. Eng., A, 1988, vol. 106, nos. 1–2, pp. 3453–351.

    Google Scholar 

  26. Fry, P.R. and Garrett, G.G., Fatigue crack growth behavior of tungsten carbide–cobalt hard metals, J. Mater. Sci., 1988, vol. 23, pp. 2325–2338.

    Article  CAS  Google Scholar 

  27. Torres, Y. and Tarrado, J.M., Fracture and fatigue of rock bit cemented carbides: Mechanics and mechanisms of rock growth resistance under monotonic and cyclic loading, Int. J. Refract. Met. Hard Mater., 2014, vol. 45, pp. 179–188.

    Article  CAS  Google Scholar 

  28. Mingard, K.P., Jones, H.G., Roebuck, B., and Nunn, J.W., In situ observation of crack growth in a WC–Co hardmetal and characterization of crack growth morphologies by EBSD, Int. J. Refract. Met. Hard Mater., 2013, vol. 36, pp. 136–142.

    Article  CAS  Google Scholar 

  29. Lisovsky, A.F., On the formation of a refractory skeleton in composite materials. A review, J. Superhard Mater., 2013, vol. 35, no. 2, pp. 65–76.

    Article  Google Scholar 

  30. Henjered, A., Hellsing, M., Andrén, H.-O., and Nordin, H., Quantitative microanalysis of carbide/carbide interfaces in WC–Co-based cemented carbides, Mater. Sci. Technol., 1986, vol. 2, pp. 847–855.

    Article  CAS  Google Scholar 

  31. Östberg, G., Buss, K., Christensen, M., Norgren, S., Andrén, H.-O., Mari, D., Wahnström, G., and Reineck, I., Effect of TaC on plastic deformation of WC–Co and Ti(C, N)–WC–Co, Int. J. Refract. Met. Hard Mater., 2006, vol. 24, pp. 145–154.

    Article  CAS  Google Scholar 

  32. Weidow, J. and Andrén, H.-O., Grain and phase boundary segregation in WC–Co with small V, Cr or Mn additions, Acta Mater., 2010, vol. 58, pp. 3888–3894.

    Article  CAS  Google Scholar 

  33. Weindow, J. and Andrén, H.-O., Grain and phase boundary segregation in WC–Co with TiC, ZrC, NbC or TaC additions, Int. J. Refract. Met. Hard Mater., 2011, vol. 29, no. 1, pp. 38–43.

    Article  CAS  Google Scholar 

  34. Ponomarev, S.S., Shatov, A.V., Mikhailov, A.A., and Firstov, S.A., Carbon distribution in WC-based cemented carbides, Int. J. Refract. Met. Hard Mater., 2015, vol. 49, no. 3, pp. 42–56.

    Article  CAS  Google Scholar 

  35. Lisovsky, A.F., Bondarenko, N.A., and Davidenko, S.A., Structure and properties of the diamond WC–6Co composite doped by 1.5 wt % of CrSi2, J. Superhard Mater., 2016, vol. 38, no. 6, pp. 382–392.

    Article  Google Scholar 

  36. Lisovskii, A.F. and Tkachenko, N.V., The submicrostructure of WC–Co hard metals alloyed with transition metals by the technology of treatment with metallic melts, Powder Metall. Met. Ceram., 1997, vol. 36, no. 11, pp. 633–638.

    Article  CAS  Google Scholar 

  37. Lisovsky, A.F. and Tkachenko, N.V. Composition and structure of cemented carbides produced by MMT-process, Powder Metall. Int., 1991, vol. 23, no. 3, pp. 157–161.

    Google Scholar 

  38. Lisovsky, A.F., Tkachenko, N.V., and Kebko, V., Structure of a binding phase in Re-alloyed WC–Co cemented carbides, Int. J. Refract. Met. Hard Mater., 1991, vol. 10, no. 1, pp. 33–36.

    Article  Google Scholar 

  39. Tarrado, J.M., Roa, J.J., Valle, V., Marshall, M.J., and Lanes, L., Fracture and fatigue behavior of WC–Co and WC–Co,Ni cemented carbides, Int. J. Refract. Met. Hard Mater., 2015, vol. 49, no. 3, pp. 184–191.

    Article  CAS  Google Scholar 

  40. Zhang, J.-X., Effect of reduction and carburization temperatures of tungsten powder on WC-phase substructure and mechanical properties of WC–Co cemented carbides, Int. J. Refract. Met. Hard Mater., 1988, vol. 7, no. 4, pp. 224–228.

    Google Scholar 

  41. Lisovsky, A.F., Some speculations on an increase of WC–Co cemented carbide service life under dynamic loads, Int. J. Refract. Met. Hard Mater., 2003, vol. 21, pp. 63–67.

    Article  CAS  Google Scholar 

  42. Lisovsky, A.F., On the imbibition of metal melts by sintered carbides, Powder Metall. Int., 1987, vol. 19, no. 5, pp. 18–21.

    Google Scholar 

  43. Lisovsky, A.F., Some problems on technical use of the phenomenon of melts imbibition of sintered composites, Powder Metall. Int., 1989, vol. 21, no. 6, pp. 7–10.

    Google Scholar 

  44. Lisovsky, A.F., The migration of metal melts in sintered composite materials, Int. J. Heat Mass Transfer, 1990, vol. 33, no. 8, pp. 1599–1603.

    Article  Google Scholar 

  45. Lisovsky, A.F., Thermodynamics of processes of consolidation of an assembly of dispersed particles and deconsolidation of a polycrystalline body, Sci. Sintering, 2002, vol. 34, no. 2, pp. 135–142.

    Article  CAS  Google Scholar 

  46. Lisovsky, A.F., Some features of mass transfer in composite materials, Sci. Sintering, 2018, vol. 50, no. 4, pp. 395–400.

    Article  CAS  Google Scholar 

  47. Lisovsky, A.F., Deconsolidation of polycrystalline skeletons in sintered composite materials, Mater. Sci. Forum, 2009, vol. 624, pp. 43–56.

    Article  CAS  Google Scholar 

  48. Eso, O.O., Fan, P., and Fang, Z.Z., A kinetic model for cobalt gradient formation during liquid phase sintering of functionally graded WC–Co, Int. J. Refract. Met. Hard Mater., 2008, vol. 26, pp. 91–97.

    Article  CAS  Google Scholar 

  49. Guo, J., Fang, Z.Z., Fan, P., and Wang, X., Kinetics of the formation of metal binder gradient in WC–Co by carbon diffusion induced liquid migration, Acta Mater., 2011, vol. 59, pp. 4719–4731.

    Article  CAS  Google Scholar 

  50. Eso, O.O., Fang, Z.Z., and Griffo, A., Kinetics of cobalt gradient formation during the liquid phase sintering of functionally graded WC–Co, Int. J. Refract. Met. Hard Mater., 2007, vol. 25, pp. 286–292.

    Article  CAS  Google Scholar 

  51. Fan, P., Fang, Z.Z., and Guo, J., A review of liquid phase migration and methods for fabrication of functionally graded cemented tungsten carbide, Int. J. Refract. Met. Hard Mater., 2013, vol. 36, pp. 2–9.

    Article  CAS  Google Scholar 

  52. Zhang, L., Wang, Y.J., Yu, X.W., Chen, S., and Xiong, X.J., Crack propagation characteristic and toughness of functionally graded WC–Co cemented carbide, Int. J. Refract. Met. Hard Mater., 2008, vol. 26, pp. 295–300.

    Article  CAS  Google Scholar 

  53. Wang, X., Hwang, K.S., Koopman, M., Fang, Z.Z., and Zhang, L., Mechanical properties and wear resistance of functionally graded WC–Co, Int. J. Refract. Met. Hard Mater., 2013, vol. 36, pp. 46–51.

    Article  CAS  Google Scholar 

  54. Liu, Y., Wang, H., Long, Z., Liaw, P., Yang, J., and Huang, B., Microstructural evolution and mechanical behaviors of graded cemented carbides, Mater. Sci. Eng., A 2006, vol. 426, pp. 346–354.

    Article  CAS  Google Scholar 

  55. Lisovsky, A.F., Properties of cemented carbides alloyed by metal melt treatment, Proc. 15th Int. Plansee Seminar, Kneringer, G., Rödhammer, P., and Widner, H., Eds., Reutte: Plansee Holding, 2001, vol. 2, no. HM23, pp. 168–179.

  56. Lisovsky, A.F., Formirovanie struktury kompozitisonnykh materialov pri obrabotke metallicheskimi rasplavami (The Structure Formation of Composite Materials during Processing with Metal Melts), Kyiv: Naukova Dumka, 2008.

  57. Colin, C., Durant, L., Favrot, N., Besson, J., Barbier, G., and Delannay, F., Processing of functional-gradient WC–Co cermets by powder metallurgy, Int. J. Refract. Met. Hard Mater., 1993–1994, vol. 12, pp. 145–152.

    Article  CAS  Google Scholar 

  58. Fang, Z. and Eso, O., Liquid phase sintering of functionally graded WC–Co composites, Scr. Mater., 2005, vol. 52, pp. 785–791.

    Article  CAS  Google Scholar 

  59. Eso, O., Fang, Z., and Griffo, A., Liquid phase sintering of functionally graded WC–Co composites, Int. J. Refract. Met. Hard Mater., 2005, vol. 23, pp. 233–241.

    Article  CAS  Google Scholar 

  60. Fan, P., Eso, O., Fang, Z.Z., and Sohn, H.Y., Effect of WC particle size on Co distribution in liquid-phase-sintered functionally graded WC–Co composite, Int. J. Refract. Met. Hard Mater., 2008, vol. 26, pp. 98–105.

    Article  CAS  Google Scholar 

  61. Fan, P., Guo, J., Fang, Z.Z., and Prichard, P., Design of cobalt gradient via controlling carbon content and WC grain size in liquid-phase-sintered WC–Co composite, Int. J. Refract. Met. Hard Mater., 2009, vol. 27, pp. 256–260.

    Article  CAS  Google Scholar 

  62. Fan, P., Guo, J., Fang, Z.Z., and Prichard, P., Effects of liquid-phase composition on its migration during liquid-phase sintering of cemented carbide, Metall. Mater. Trans. A, 2009, vol. 40, pp. 1995–2000.

    Article  CAS  Google Scholar 

  63. Fisher, U.K.R., Hartzell, E.T., and Akerman, J.G.H., US Patent 4 743 515, 1988.

  64. Fang, Z.Z., Fan, P., and Guo, J., US Patent Appl. 2010/0101368.

  65. Fang, Z.Z., Fan, P., and Guo, J., US Patent Appl. 2011/0116963.

  66. Guo, J., Fan, P., Wang, X., and Fang, Z.Z., A novel approach for manufacturing functionally graded cemented tungsten carbide composites, Int. J. Powder Metall., 2011, vol. 47, pp. 55–62.

    Google Scholar 

  67. Guo, J., Fang, Z.Z., Fan, P., and Wang, X., Kinetics of the formation of metal binder gradient in WC–Co by carbon diffusion induced liquid migration, Acta Mater., 2011, vol. 59, pp. 4719–4731.

    Article  CAS  Google Scholar 

  68. Ther, O., Colin, C., Gerbaud, L., and Dourfaye, A., Effect of gradation by reactive imbibition on commercial WC–Co drilling tools used in oil and gas industries, Proc. 18th Int. Plansee Seminar, Kneringer, G., Rödhammer, P., and Widner, H., Reutte: Plansee Holding, 2013, vol. 2, no. HM10, pp. 1–14.

  69. Azcona, I., Ordonez, A., Sanchez, J.M., and Castro, F., Hot isostatic pressing of ultrafine tungsten carbide–cobalt hardmetals, J. Mater. Sci., 2002, vol. 37, pp. 4189–4195.

    Article  CAS  Google Scholar 

  70. Kim, H.C., Shon, I.J., Yoon, J.K., and Doh, J.M., Consolidation of ultra fine WC and WC–Co hard materials by pulsed current activated sintering and its mechanical properties, Int. J. Refract. Met. Hard Mater., 2007, vol. 25, pp. 46–52.

    Article  CAS  Google Scholar 

  71. Kim, H.C., Shon, I.J., and Munir, Z.A., Rapid sintering of ultra-fine WC–10 wt% Co by high-frequency induction heating, J. Mater. Sci., 2005, vol. 40, pp. 2849–2854.

    Article  CAS  Google Scholar 

  72. Wei, C.B., Song, X.Y., Fu, J., Liu, X.M., Gao, Y., Wang, H.B., and Zhao, S.X., Microstructure and properties of ultrafine cemented carbides-differences in spark plasma sintering and sinter-HIP, Mater. Sci. Eng., A, 2012, vol. 552, pp. 427–433.

    Article  CAS  Google Scholar 

  73. McCandlish, L.E., Kear, B.H., and Kim, B.K., Processing and properties of nanostrutured WC–Co, Nanostruct. Mater., 1992, vol. 1, pp. 119–124.

    Article  CAS  Google Scholar 

  74. Zhu, Y.T. and Manthiram, A., A new route for the synthesis of tungsten carbide-cobalt nanocomposites, J. Am. Ceram. Soc., 1994, vol. 77, pp. 2777–2778.

    Article  CAS  Google Scholar 

  75. Fang, Z. and Eason, J.W., Study of nanostructured WC–Co composites, Int. J. Refract. Met. Hard Mater., 1995, vol. 13, pp. 297–303.

    Article  CAS  Google Scholar 

  76. Cha, S.I., Hong, S.H., and Ha, G.H., Microstructure and mechanical properties of nanocrystalline WC–10Co cemented carbides, Scr. Mater., 2001, vol. 44, pp. 1535–1539.

    Article  CAS  Google Scholar 

  77. Liu, S., Huang, Z.L., Liu, G., and Yang, G.B., Preparing nano-crystalline rare earth doped WC/Co powder by high energy ball milling, Int. J. Refract. Met. Hard Mater., 2006, vol. 24, pp. 461–464.

    Article  CAS  Google Scholar 

  78. Lee, G.H. and Kang, S., Sintering of nano-sized WC–Co powders produced by a gas reduction–carburization process, J. Alloy Compd., 2006, vol. 419, pp. 281–289.

    Article  CAS  Google Scholar 

  79. Gryaznov, V.G., Karpelov, A.E., and Romanov, A.E., Crystalline stability of dislocations in microcrystals, Pis’ma Zh. Tekh. Fiz., 1989, vol. 15, no. 2, pp. 39–44.

    Google Scholar 

  80. Gryaznov, V.G., Polonsky, J.A., Romanov, A.E., and Trusov, L.I., Size effect of dislocation stability in nanocrystals, Phys. Rev. B: Condens. Matter Mater. Phys., 1991, vol. 44, pp. 42–46.

    Article  CAS  Google Scholar 

  81. Roeduck, B. and Almond, E.A., Deformation and fracture processes and the physical metallurgy of WC–Co hardmetals, Int. Mater. Rev., 1988, vol. 33, pp. 90–100.

    Article  Google Scholar 

  82. Loshak, M.G., Prochnost’ i dolgovechnost’ tverdykh splavov (Strength and Durability of Solid Alloys), Kiev: Naukova Dumka, 1984.

  83. Sivaprahasam, D., Chandrasekar, S.B., and Sundaresan, R., Microstructure and mechanicalproperties of nanocrystalline WC–12Co consolidated by spark plasma sintering, Int. J. Refract. Met. Hard Mater., 2007, vol. 25, pp. 144–152.

    Article  CAS  Google Scholar 

  84. Bonache, V., Salvador, M.D., Rocha, V.G., and Borrell, A., Microstructural control of ultrafineand nanocrystalline WC–12Co–VC/Cr3C2 mixture by spark plasma sintering, Ceram. Int., 2011, vol. 37, pp. 1139–1142.

    Article  CAS  Google Scholar 

  85. Bonache, V., Salvador, M.D., Fernandez, A., and Borrell, A., Fabrication of full density near-nanostructured cemented carbides by combination of VC/Cr3C2 addition and consolidation by SPS and HIP technologies, Int. J. Refract. Met. Hard Mater., 2011, vol. 29, pp. 202–208.

    Article  CAS  Google Scholar 

  86. Zhao, S.X., Song, X.Y., Wei, C.B., Zhang, L., Liu, X.M., and Zhang, J.X., Effects of WC particle size on densification and properties of spark plasma sintered WC–Co cermet, Int. J. Refract. Met. Hard Mater., 2009, vol. 27, pp. 1014–1018.

    Article  CAS  Google Scholar 

  87. Lin, C.G., Kny, E., Yuan, G.S., and Djuricic, B., Microstructure and properties of ultrafine WC–0.6VC–10Co hardmetals densified by pressure-assisted critical liquid phase sintering, J. Alloys Compd., 2004, vol. 383, nos. 1–2, pp. 98–102.

    Article  CAS  Google Scholar 

  88. Azcona, I., Ordóñez, A., Sánchez, J.M., and Castro, F., Hot isostatic pressing of ultrafine tungsten carbide–cobalt hardmetals, J. Mater. Sci., 2002, vol. 37, no. 19, pp. 4189–4195.

    Article  CAS  Google Scholar 

  89. Sivaprahasam, D., Chandrasekar, S.B., and Sundaresan, R., Microstructure and mechanical properties of nanocrystalline WC–12Co consolidated by spark plasma sintering, Int. J. Refract. Met. Hard Mater., 2007, vol. 25, no. 2, pp. 144–152.

    Article  CAS  Google Scholar 

  90. Kim, H.C., Shon, I.J., Jeong, I.K., Ko, I.Y., Yoon, J.K., and Doh, J.M., Rapid sintering of ultra fine WC and WC–Co hard materials by high-frequency induction heated sintering and their mechanical properties, Metal Mater. Int., 2007, vol. 13, no. 1, pp. 39–45.

    Article  CAS  Google Scholar 

  91. Dubensky, E.M. and Nilsson, R.T., US Patent 5 773 735, 1996.

  92. Michalski, A. and Siemiaszko, D., Nanocrystalline cemented carbides sintered by the pulse plasma method, Int. J. Refract. Met. Hard Mater., 2007, vol. 25, no. 2, pp. 153–158.

    Article  CAS  Google Scholar 

  93. Wang, X., Fang, Z., and Sohn, H.Y., Nanocrystalline cemented tungsten carbide sintered by an ultra-high-pressure rapid hot consolidation process, Proc. 2007 Int. Conf. on Powder Metallurgy and Particulate Materials, Denver, 2007, pp. 8–10.

  94. Konyashin, I., Ries, B., and Lachmann, F., Near-nano WC–Co hardmetals: Will they substitute conventional coarse-grained mining grades?, Int. J. Refract. Met. Hard Mater., 2010, vol. 28, no. 4, pp. 489–497.

    Article  CAS  Google Scholar 

  95. Fang, Z.Z., Wang, X., Ryu, T., Hwang, K.S., and Sohn, H.Y., Synthesis, sintering and mechanical properties of nanocrystallaine cemented tungsten carbide. A review, Int. J. Refract. Met. Hard Mater., 2009, vol. 27, pp. 288–299.

    Article  CAS  Google Scholar 

  96. Deng, X., Patterson, D.R., Chawla, K.K., et al., Mechanical properties of a hybrid cemented carbide composite, Int. J. Refract. Met. Hard Mater., 2001, vol. 19, pp. 547–552.

    Article  CAS  Google Scholar 

  97. Fang, Z.Z., Giffo, A., White, B., et al., Fracture resistant super hard materials and hardmetals composite with functionally designed microstructure, Int. J. Refract. Met. Hard Mater., 2001, vol. 19, pp. 453–459.

    Article  CAS  Google Scholar 

  98. Kushch, V.I., Lisovsky, A.F., and Shestakov, S.I., Modeling of mesostructure in sintered solid alloys, Sverkhtverd. Mater., 2003, no. 3, pp. 32–40.

  99. Bondarenko, V.P. and Matveichuk, A.A., Computer modeling of chemical equilibria in the triple system carbon–hydrogen–oxygen, Energotekhnol. Resursosberezhenie, 2015, nos. 5–6, pp. 43–54.

  100. Bondarenko, V.P. and Matveichuk, A.A., Computer modeling of chemical equilibria in the triple system C–W–H, Energotekhnol. Resursosberezhenie, 2016, no. 2, pp. 50–61.

  101. Bondarenko, V.P. and Matveichuk, A.A., Computer modeling of chemical equilibria in the triple system WO3–H2O, Energotekhnol. Resursosberezhenie, 2017, no. 4, pp. 35–48.

  102. Bondarenko, V.P., Matveichuk, A.A., Savchuk, A.N., and Vashchenko, A.N., A stude of combined reduction-carbidization of tungsten from WO3 in methane-hydrogen atmosphere without use of graphite, J. Superhard Mater., 2006, vol. 28, no. 5, pp. 33–44.

    Google Scholar 

  103. Bondarenko, V.P., Andreyev, I.V., Savchuk, A.N., Matveichuk, A.A., Ievdokymova, O.V., and Galkov, A.V., Recent researches on the metal-ceramic composites based on the decamicron-grained WC, Int. J. Refract. Met. Hard Mater., 2013, vol. 39, pp. 18–31.

    Article  CAS  Google Scholar 

  104. Matveichuk, A.A. and Davidenko, S.A., On the interaction of the cobalt melt with polycrystalline tungsten monocarbide, J. Superhard Mater., 2018, vol. 40, no. 3, pp. 184–188.

    Article  Google Scholar 

  105. Chaix, J.M., Quantitative analysis of microstructure and modeling of sintering, Mater. Sci. Forum, 2009, vol. 624, pp. 1–18.

    Article  CAS  Google Scholar 

  106. Kolodnits’kyi, V.M. and Bagirov, O.E., On the structure formation of diamond-containing composites used in drilling and stone-working tools (A review), J. Superhard Mater., 2017, vol. 39, no. 1, pp. 1–17.

    Article  Google Scholar 

  107. Bondarenko, N.A. and Mechnik, V.A., The influence of transition area diamond-matrix on wear resistance and operation properties of drilling tool produced by ISM, SOCAR Proc., 2011, no. 2, pp. 18–24.

  108. Novikov, N.V., Bondarenko, N.A., Zhukovskii, A.N., and Mechnik, V.A., The effect of diffusion and chemical reactions on the structure and properties of drill bit inserts. 1. Kinetic description of systems Cdiamond–VK6 and Cdiamond–(VK6–CrB2–W2B5), Fiz. Mezomekh., 2005, vol. 8, no. 2, pp. 99–106.

    CAS  Google Scholar 

  109. Zhukovskii, A.N., Maistrenko, A.L., Mechnik, V.A., and Bondarenko, N.A., The stress-strain state of the bonding around the diamond grain exposed to normal and tangent loading components. Part 1. Model, Trenie Iznos, 2002, vol. 23, no. 2, pp. 146–153.

    Google Scholar 

  110. Zhukovskii, A.N., Maistrenko, A.L., Mechnik, V.A., and Bondarenko, N.A., Stress-strain state of the matrix around the diamond grain exposed to the normal and tangent loading components. Part 2. Analysis, Trenie Iznos, 2002, vol. 23, no. 4, pp. 393–396.

    CAS  Google Scholar 

  111. Bondarenko, N.A., Novikov, N.V., Mechnik, V.A., Oleinik, G.S., and Vereshchaka, V.M., Structural peculiarities of highly wear-resistant superhard composites of the diamond–WC–6Co carbide system, Sverkhtverd. Mater., 2004, no. 6, pp. 3–15.

  112. Bondarenko, N.A. and Mechnik, V.A., Drilling oil and gas wells by ISM diamond tools, SOCAR Proc., 2012, no. 3, pp. 6–12.

Download references

ACKNOWLEDGMENTS

The author is grateful to V.M. Tkach, Dr. Sci. (Tech.), for electron microscopy studies, to M.G. Loshak, Dr. Sci. (Eng.), for determining the physical and mechanical properties, to V.M. Kulakivskii, Cand. Sci. (Eng.), for measuring the values of fatigue crack resistance, to Yu.P. Linenko-Mel’nikov, Cand. Sci. (Eng.), for testing crown bits in perforation drilling, and to O.D. Krivorot’ka for testing conical rotary cutters in mines.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. Lisovsky.

Additional information

Translated by O. Kadkin

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lisovsky, A.F. Role of Materials Science in Increasing the Efficiency of a Rock-Crushing Tool Equipped with WC–Co Cemented Carbide Inserts: A Review. J. Superhard Mater. 42, 203–222 (2020). https://doi.org/10.3103/S106345762004005X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S106345762004005X

Keywords:

Navigation