Skip to main content
Log in

Modeling the Temperature Field in a High-Pressure Apparatus during the Sintering of Large-Sized Products Based on Boron Carbide

  • PRODUCTION, STRUCTURE, PROPERTIES
  • Published:
Journal of Superhard Materials Aims and scope Submit manuscript

Abstract

A computer model is developed on the basis of the finite-element method for the temperature field formed during the sintering of large-size boron carbide products in the working cell of a high-pressure apparatus at a pressure of 0.5–1.0 GPa and temperatures of 1700–1750°C. The dependence of the thermophysical properties of a sample on the porosity and temperature in the process of sintering is taken into account. It is shown that the selection of geometric parameters for the constructional elements of the working cell of a high-pressure apparatus makes it possible to find such a cell structure, whose application may provide a nearly uniform temperature field in a large-size sample under sintering and uniformity of the density and physicomechanical properties of the sintered sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Kislyi, P.S., Kuzenkova, M.A., Bodnaruk, N.I., and Grabchuk, B.L., Karbid bora (Boron Carbide), Kiev: Naukova Dumka, 1988.

  2. Suri, A.K., Subramanian, C., Sonber, J.K., and Murthy, T.S.R.Ch., Synthesis and consolidation of boron carbide: A review, Int. Mater. Rev., 2010, vol. 55, no. 1, pp. 4–9.

    Article  CAS  Google Scholar 

  3. Ostapenko, I.T., Slezov, V.V., Tarasov, R.V., Kartsev, N.F., and Podtykan, V.P., Densification of boron carbide powder during hot pressing, Powder Metall. Met. Ceram., 1979, vol. 18, no. 5, pp. 312–316.

    Google Scholar 

  4. Kuzenkova, M.A., Kislyi, P.S., Grabchuk, B.L., and Bodnaruk, N.I., The structure and properties of sintered boron carbide, J. Less-Common Met., 1979, vol. 61, pp. 217–223.

    Article  Google Scholar 

  5. Thevenot, F., Boron carbide—A comprehensive review, J. Eur. Ceram. Soc., 1990, vol. 6, no. 4, pp. 205–225.

    Article  CAS  Google Scholar 

  6. Ivzhenko, V.V., Kryl’, A.O., Kryl’, Ya.A., Kaidash, O.N., Leshchuk, A.A., Dub, S.N., and Sarnavskaya, G.F., Study of aeroabrasive wear of hot-pressed materials of the B4C–TiB2 system, J. Superhard Mater., 2014, vol. 36, no. 3, pp. 187–192.

    Article  Google Scholar 

  7. Kaidash, O.N., Turkevich, V.Z., Ivzhenko, V.V., et al., Effect of TiB2–TiB2–(secondary) borides on the structure, properties, and abrasive wear of hot-pressed CMC-composites B4C–(TiB2–TiH2), in Porodorazrushayushchii i metalloobrabatyvayushchii insturment: tekhnika i tekhnologiya ego izgotovleniya i primeneniya (Rock Cutting and Metal Processing Tools: Production Equipment and Technology, Application), Kyiv: Inst. Sverkhtverd. Mater. im. V.N. Bakulya, Nats. Akad. Nauk Ukr., 2018, no. 21, pp. 392–400.

  8. Lee, H. and Speyer, R.F., Pressureless sintering of boron carbide, J. Am. Ceram. Soc., 2003, vol. 86, no. 9, pp. 1468–1473.

    Article  CAS  Google Scholar 

  9. Skorokhod, V.V., Processing, microstructure, and mechanical properties of B4C–TiB2 particulate sintered composites I. Pressureless sintering and microstructure evolution, Powder Metall. Met. Ceram., 2000, vol. 39, nos. 7–8, pp. 414–423.

    Article  CAS  Google Scholar 

  10. Atkinson, H.V. and Davies, S., Fundamental aspects of hot isostatic pressing: An overview, Metall. Mater. Trans. A, 2000, vol. 31, pp. 2981–3000.

    Article  Google Scholar 

  11. Rothe, S., Kalabukhov, S., Frage, N., and Hartmann, S., Field assisted sintering technology. Part I: Experiments, constitutive modeling and parameter identification, GAMM-Mitt., 2016, vol. 39, no. 2, pp. 114–148.

    Article  Google Scholar 

  12. Zavaliangos, A., Zhang, J., Krammer, M., and Groza, J., Temperature evolution during field activated sintering, Mater. Sci. Eng., A, 2004, vol. 379, pp. 218–228.

    Article  Google Scholar 

  13. Yue, X.Y., Zhao, S.M., Lü, P., Chang, Q., and Ru, H., Synthesis and properties of hot pressed B4C–TiB2 ceramic composite, Mater. Sci. Eng., A, 2010, vol. 527, pp. 7215–7219.

    Article  Google Scholar 

  14. Raichenko, A.I., Osnovy protsessa spekaniya poroshkov propuskaniem elektricheskogo toka (Principles of Powder Sintering by Electrical Current Discharge), Moscow: Metallurgiya, 1987.

  15. Anselmi-Tamburini, U., Munir, Z.A., Kodera, Y., Imai, T., and Ohyanagi, M., Influence of synthesis temperature on the defect structure of boron carbide: Experimental and modeling studies, J. Am. Ceram. Soc., 2005, vol. 88, no. 6, pp. 1382–1387.

    Article  CAS  Google Scholar 

  16. Kazakova, V.N. and Grigoryev, E.G., Spark plasma sintering of boron carbide powder, 15th Int. School-Conf. “New Materials—Materials of Innovative Energy,” Moscow, Russia, 23–27 Oct., 2017, KnE Mater. Sci., 2018, vol. 4, no. 1, pp. 548–557.

    Google Scholar 

  17. Katz, J.D., Blake, R.D., Petrovic, J.J., and Sheinberc, H., Microwave sintering of boron carbide, MRS Online Proc. Libr., 1988, vol. 124, pp. 219–226.

    Article  CAS  Google Scholar 

  18. Ghasali, E., Alizadeh, M., Ebadzadeh, T., Pakseresht, A.H., and Rahbari, A., Investigation on microstructural and mechanical properties of B4C-aluminum matrix composites prepared by microwave sintering, J. Mater. Res. Technol., 2015, vol. 4, no. 4, pp. 411–415.

    Article  CAS  Google Scholar 

  19. High-temperature microwave sintering of boron carbide ceramic armor materials. https://www.industrialmicrowavefurnace.com.

  20. Shul’zhenko, A.A., Stratiichuk, D.A., Oleinik, G.S., Belyavina, N.N., and Markiv, V.Ya., Formation of polycrystalline boron carbide with elevated fracture toughness, Powder Metall. Met. Ceram., 2005, vol. 44, nos. 1–2, pp. 75–85.

    Article  Google Scholar 

  21. Badica, P., Grasso, S., Borodianska, H., Xie, S.S., Li, P., Tatarko, P., Reece, M.J., Sakka, J., and Vasylkiv, O., Tough and dense boron carbide obtained by high-pressure (300 MPa) and low-temperature (1600°C) spark plasma sintering, J. Ceram. Soc. Jpn., 2014, vol. 122, no. 4, pp. 271–275.

    Article  Google Scholar 

  22. Singhal, S.K. and Singh, B.P., Sintering of boron carbide under high pressures and temperatures, Indian J. Eng. Mater. Sci., 2006, vol. 13, pp. 129–134.

    CAS  Google Scholar 

  23. Liu, L., Li, X., He, Q., Xu, L., Cao, X., Peng, X., Meng, C., Wang, W., Zhu, W., and Wang, Y., Sintering dense boron carbide without grain growth under high pressure, J. Am. Ceram. Soc., 2017, vol. 101, no. 3, pp. 1289–1297. https://doi.org/10.1111/jace.15282

  24. Liu, F., He, D., Liu, P., Wang, H., Xu, C., Yin, S., Yin, W., and Li, Y., Plastic deformation and sintering of alumina under high pressure, J. Appl. Phys., 2013, vol. 114, no. 23, 233504.

    Article  Google Scholar 

  25. Ji, W., Rehman, S.S., Wang, W., Wang, W., Wang, Y., Zhang, J., Zhang, F., and Fu, Z., Sintering boron carbide ceramics without grain growth by plastic deformation as the dominant densification mechanism, Sci. Rep., 2015, vol. 5, 15827.

    Article  CAS  Google Scholar 

  26. Kim, K.H., Chae, J.H., Park, J.S., Ahn, J.P., and Shim, K.B., Sintering behavior and mechanical properties of B4C ceramics fabricated by spark plasma sintering, J. Ceram. Proc. Res., 2009, vol. 10, no. 6, pp. 716–720.

    Google Scholar 

  27. Lyeshchuk, O., Computational modeling of superhard materials synthesis, Comput. Mater. Sci., 2010, vol. 49, no. 1, pp. 585–594.

    Article  Google Scholar 

  28. Gu, X., Li, R., and Tian, Y., Finite element simulation of the temperature field in the large volume cubic high pressure apparatus cavity, J. Cryst. Growth, 2014, vol. 390, pp. 109–113.

    Article  CAS  Google Scholar 

  29. Panasyuk, T.S., Lyeshchuk, O.O., Lusakovs’kyi, V.V., Kalenchuk, V.A., and Zanevs’kyi, O.O., Modeling of temperature fields in the growth volume of the high-pressure cell of the six-punch high pressure apparatus in growing of diamond crystals by T-gradient method, J. Superhard Mater., 2017, vol. 39, no. 6, pp. 390–396.

    Article  Google Scholar 

  30. Dutka, V.A., Maystrenko, A.L., and Kulich, V.G., The effect of design parameters of a production unit on the temperature drop in a sample during high-speed sintering under pressure, J. Superhard Mater., 2019, vol. 41, no. 6, pp. 421–433.

    Article  Google Scholar 

  31. Teplo- i massoobmen. Teplotekhnicheskii eksperiment. Spravochnik (Heat and Mass Transfer. Heat Engineering Experiment: Handbook), Grigor’ev, V.A. and Zorin, V.I., Eds., Moscow: Energoizdat, 1982.

  32. Wei, X., Giuntini, D., Maximenko, A.L., et al., Experimental investigation of electric contact resistance in spark plasma sintering tooling setup, J. Am. Ceram. Soc., 2015, vol. 98, no. 11, pp. 3553–3560.

    Article  CAS  Google Scholar 

  33. Liu, J., Zeng, F., Zou, Z., and Li, Y., Continuum modeling of B4C densification during spark plasma sintering, J. Mater. Res., 2017, vol. 32, no. 17, pp. 3425–3433.

    Article  CAS  Google Scholar 

  34. Denisov, M.A., Matematicheskoe modelirovanie teplofizicheskikh protsessov: ANSYS i CAE-proektirovanie (Mathematical Modeling of Thermophysical Processes: ANSYS and CAE-Design), Yekaterinburg: Ural. Fed. Univ., 2011.

  35. Svoistva konstruktsionnykh materialov na osnove ugleroda. Spravochnik (Properties of Carbon-Based Construction Materials: Handbook), Sosedov, V.P., Ed., Moscow: Metallurgiya, 1975.

    Google Scholar 

  36. Paterson, M.S. and Edmond, J.M., Deformation of graphite at high pressures, Carbon, 1972, vol. 10, pp. 29–34.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Dutka.

Additional information

Translated by E. Glushachenkova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutka, V.A., Maystrenko, A.L., Borymskyi, O.I. et al. Modeling the Temperature Field in a High-Pressure Apparatus during the Sintering of Large-Sized Products Based on Boron Carbide. J. Superhard Mater. 42, 240–250 (2020). https://doi.org/10.3103/S1063457620040048

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1063457620040048

Keywords:

Navigation