Skip to main content
Log in

Elastic and thermodynamic properties of potentially superhard carbon boride materials

  • Production, Structure, Properties
  • Published:
Journal of Superhard Materials Aims and scope Submit manuscript

Abstract

Boron icosahedral structures are the basic building structures of many important hard borides and especially B4C. The structural and thermodynamic properties of B4C have been examined applying molecular dynamics simulation with the use of both ab initio and bond order Tersoff potentials. Various physical quantities of B4C including the elastic constants, thermal expansion coefficients, and specific heat have been examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wu, B.R., Sung, C.M., Lee, F.E., and Tai, M.F., A First-Principles Study of Physical Properties of Monoatomic Structures of B, C, N, and O, Chinese J. Physics, 2002, vol. 40, pp. 187–196.

    CAS  Google Scholar 

  2. Oganov, A.R. and Solozhenko, V.L., Boron: a Hunt for Superhard Polymorphs, J. Superhard Mater., 2009, vol. 31, pp. 285–291.

    Article  Google Scholar 

  3. McMillan, P.F., New Materials from High-Pressure Experiments, Nature Materials, 2002, vol. 1, pp. 19–25.

    Article  CAS  Google Scholar 

  4. Gregoryanz, E., Sanloup, C., Soyamazulu, S., Badro, J., Fiquet, G., Mao, H.K., and Hemley, R.J., Synthesis and Characterization of a Binary Noble Metal Nitride, Nature Materials, 2004, vol. 3, pp. 294–297.

    Article  CAS  Google Scholar 

  5. Lowther, J.E., Potential Superhard Phases and the Stability of Diamond-Like Boron-Carbon Structures, J. Physics: Condensed Matter, 2005, vol. 17, pp. 3221–3228.

    Article  CAS  Google Scholar 

  6. Chen, S. and Gong, X.G., Superhard Pseudocubic BC2N Superlattices, Phys. Rev. Let., 2007, vol. 98, art. 015502 (5).

  7. Kaner, R.B., Gilman, J.J., and Tolbert, S.H., Designing Superhard Materials, Science, 2005, vol. 308, pp. 1268–1273.

    Article  CAS  Google Scholar 

  8. Mattesini, M. and Matar, S.F., Search for Ultrahard Materials: Theoretical Characterisation of Novel Orthorhombic BC2N Crystals, Int. J. Inorg. Mater., 2001, vol. 3, pp. 943–947.

    Article  CAS  Google Scholar 

  9. Emin, D., Icosahendral Boron-Rich Solids, Physics Today, 1987, vol. 20, pp. 55–59.

    Article  Google Scholar 

  10. Gao, F.M., Hou, L., and He, Y.H., Origin of Superhardness in Icosahedral Boron Materials, J. Phys. Chem. B, 2004, vol. 108, art. 13069.

  11. Lowther, J.E., Possible Ultrahard Materials Based upon Boron Icosahedra, Physica B, 2002, vol. 322, pp. 173–178.

    Article  CAS  Google Scholar 

  12. Letsoalo, T.E. and Lowther, J.E., Computational Investigation into Elastic Properties of Bulk and Defective Ultrahard B6O, J. Superhard Mater., 2011, vol. 33, pp. 19–25.

    Article  Google Scholar 

  13. McColm, I.J., Ceramic Hardness, New York: Plenum Press, 1990.

    Google Scholar 

  14. Letsoalo, T.E. and Lowther, J.E., Systematic Trends in Boron Icosahedral Structured Materials, Physica B, 2008, vol. 403, pp. 2760–2765.

    Article  CAS  Google Scholar 

  15. Suleyman, E., de Wijs, G.A, and Brocks, G., DFT Study of Planar Boron Sheets: A New Template for Hydrogen Storage, J. Phys. Chem., 2009, vol. 13, art. 18962.

  16. Widom, M. and Mihalkovic, M., Crystal Relative Stability of α and β Boron, J. Physics: Conference Series, 2009, vol. 176, art. 012024.

  17. Vast, N., Baroni, S., Zerah, G., Bensson, J.M., Polian, A., Grimsditch, M., and Chervin, J.C., Lattice Dynamics of Icosahedral Alpha-Boron Under Pressure, Phys. Rev. Lett., 1997, vol. 78, pp. 693–696.

    Article  Google Scholar 

  18. Will, G. and Ploog, K., Crystal Structure of I-Tetragonal Boron, Nature, 1974, vol. 251, pp. 406–408.

    Article  CAS  Google Scholar 

  19. Lee, H. and Speyer, R.F., Hardness and Fracture Toughness of Pressureless-Sintered Boron Carbide (B4C), J. Amer. Ceram. Soc., 2002, vol. 85, pp. 1291–1293.

    Article  CAS  Google Scholar 

  20. Gao, F., Qin, X., Wang, L., He, Y., Sun, G., Hou, L., and Wang, W., Prediction of New Superhard Boron-Rich Compounds, J. Phys. Chem. B, 2005, vol. 109, art. 14892.

  21. Feng, Y., Seidler, G.T., Cross, C., Macrander, A.T., and Rehr, A. H., Role of Inversion Symmetry and Multipole Effects in Nonresonant X-Ray Raman Scattering from Icosahedral B4C, Phys. Rev. B, 2004, vol. 69, art. 125402.

  22. Oganov, A.R. and Solozhenko, V.L., Boron: a Hunt for Superhard Polymorphs, J. Superhard Mater., 2009, vol. 31, no. 5, pp. 285–290.

    Article  Google Scholar 

  23. Oganov, A.R., Chen, J., Gatti, C., Ma, Y., Yanming, Y., Glass, C., Liu, Z., Yu, T., and Solozhenko, V.L., Ionic High-Pressure Form of Elemental Boron, Nature, 2009, vol. 457, pp. 863–865.

    Article  CAS  Google Scholar 

  24. Li, D. and Ching, W.Y., Electronic Structures and Optical Properties of Low- and High-Pressure Phases of Crystalline B2O3, Phys. Rev. B, 1996, vol. 54, pp. 13616–13622.

    Article  CAS  Google Scholar 

  25. Kulikovsky, V., Vorlicek, V., Bohac, R., Ctvrtlik, R., Stranyanek, M., Dejneka, A., and Jastrabik, L., Mechanical Properties and Structure of Amorphous and Crystalline B4C Films, Diamond Relat. Mater., 2008, vol. 18, pp. 27–33.

    Article  Google Scholar 

  26. Allen, M.P. and Tildesley, D.J., Computer Simulation in Chemical Physics, New York: Kluwer Academic Publishers, 1993.

    Google Scholar 

  27. Heermann, D.W., Computer Simulation Methods in Theoretical Physics, Berlin: Springer-Verlag, 2nd edition, 1990.

    Book  Google Scholar 

  28. Kresse, G. and Hafner, J., Ab Initio Molecular Dynamics for Liquid Metals, Phys. Rev. B, 1993, vol. 47, pp. 558–561.

    Article  CAS  Google Scholar 

  29. Ceperley, D. and Alder, B. Ground State of the Electron Gas by a Stochastic Method, Phys. Rev. Lett., 1980, vol. 45, pp. 566–570.

    Article  CAS  Google Scholar 

  30. Monkhorst, H.J. and Pack, J.D. Special Points for Brillouin-Zone Integrations, Phys. Rev. B, 1976, vol. 13, pp. 5188–5193.

    Article  Google Scholar 

  31. Kresse, G. and Joubert, D.P., From Ultrasoft Pseudopotentials to the Projector Augmented Wave Method, ibid., 1999, vol. 59, pp. 1758–1767.

    Article  CAS  Google Scholar 

  32. Smith, W. and Forester, T., Molecular Dynamics of Structured Materials, J. Molecular Graphics, 1996, vol. 14, pp. 136–148.

    Article  CAS  Google Scholar 

  33. Gale, J.D., GULP: A Computer Program for the Symmetry-Adapted Simulation of Solids, J. Chem. Soc., Faraday Trans., 1997, vol. 1, pp. 629–641.

    Google Scholar 

  34. Tersoff, J., Empirical Interatomic Potential for Silicon with Improved Elastic Constants, Phys. Rev. B, 1988, vol. 38, pp. 9902–9905.

    Article  CAS  Google Scholar 

  35. Tersoff, J., Modeling Solid-State Chemistry: Interatomic Potentials for Multicomponent Systems, ibid., 1989, vol. 39, pp. 5566–5568.

    Article  Google Scholar 

  36. Chen, E.T., Barnett, R. N., and Landman, U., Modelling Various Boron Structures, ibid., 1990, vol. 41, pp. 439–450.

    Article  CAS  Google Scholar 

  37. Matsunaga, K., Fisher, C., and Matsubara, H., Tersoff Potential Parameters for Simulating Cubic Boron Carbonitrides, Jpn. J. Appl. Phys., 2000, vol. 39, part. 1, no. 1A/B, pp. L48–L54.

    Article  Google Scholar 

  38. Munetoh, S., Motooka, T., Moriguchi, K. and Shintani, A., Interatomic Potentials for Si-O Systems Using Tersoff Parametization, Computational Materials Science, 2007, vol. 39, pp. 334–340.

    Article  CAS  Google Scholar 

  39. Deker, B. and Kasper, B., Crystallographic Structure of Various Phases of Boron, Acta Crystallograhy, 1959, vol. 12, pp. 503–509.

    Article  Google Scholar 

  40. Nieto-Sanz, D., Loubeyre, P., Crichton, W., and Mezouar, M., X-Ray Study of the Synthesis of Boron Oxides at High Pressure: Phase Diagram and Equation of State, Phys. Rev. B, 2004, vol. 70, art. 214108.

  41. Hoard, J., Hughes, R.E., and Sands, D.E., The Structure of Tetragonal Boron, J. Amer. Chem. Soc., 1958, vol. 80, pp. 4507–4510.

    Article  CAS  Google Scholar 

  42. Delaye, J.M., Modeling of Multicomponent Glasses: A Review. Curr. Opin. Solid State Mat. Sci., 2001, vol. 5, no. 5, pp. 451–478.

    Article  CAS  Google Scholar 

  43. Ivashchenko, V. I., Shevchenko, V.I., and Turchi, P.E.A., First-Principles Study of the Atomic and Electronic Structures of Crystalline and Amorphous B4C, Phys. Rev. B, 2009, vol. 80, art. 235208.

  44. Lee, S.D., Bylander, M., and Kleinmann, L., Elastic Moduli of B12 and its Compounds, ibid., 1992, vol. 45, pp. 3245–3251.

    Article  CAS  Google Scholar 

  45. McClellan, K.J., Chu, F., Roper, J.M., and Shingo, I., Room Temperature Single Crystal Elastic Constants of Boron Carbide, J. Mater. Sci., 2001, vol. 36, pp. 3403–3409.

    Article  CAS  Google Scholar 

  46. Manghnani, M.H., Wang, Y., Li, F., Zinin, P., and Rafanielloa, W., Elastic and Vibrational Properties of B4C to 21 GPa, Proc. AIRAPT-17, Science and Technology of High Pressure, India, Hyderabad: Universities Press, 2000, pp. 945–948.

  47. Pierson, H.O., Handbook of Carbon, Graphite, Diamond, and Fullerenes: Properties, Processing, and Applications, London: Noyes Publications, 1993.

    Google Scholar 

  48. Reeber, R.R. and Wang, K., Thermal Expansion, Molar Volume, and Specific Heat of Diamond from 0 to 3000 K, J. Electronic Mater., 1996, vol. 25, pp. 63–67.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original English Text © T.E. Letsoalo, J.E. Lowther, 2012, published in Sverkhtverdye Materialy, 2012, Vol. 34, No. 1, pp. 38–48.

About this article

Cite this article

Letsoalo, T.E., Lowther, J.E. Elastic and thermodynamic properties of potentially superhard carbon boride materials. J. Superhard Mater. 34, 28–36 (2012). https://doi.org/10.3103/S1063457612010030

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1063457612010030

Keywords

Navigation