Skip to main content
Log in

Resonance Effects in the Bent Waveguide-Based Fabry–Perot Resonator with Mirrors of Spatially Varying Reflectivity

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

High-Q Fano resonances and effects like electromagnetically induced transparency have been demonstrated in the bent waveguide-based Faby–Perot resonator with mirrors of nonuniform reflectivity. The phenomena are shown to arise from the coupling between the fundamental mode of the core and a whispering gallery mode of the bent waveguide’s cladding. The influence of all major geometric parameters of the resonator on the resonant features in its transmission and reflection spectra is investigated. The results obtained in the paper can find application in the design of novel functional elements of photonics, for example, portable high-resolution refractometers for bio- and chemosensing systems and optical sensors of mechanical effects such as strain, stress, deformation, or displacement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Fano, U., Phys. Rev., 1961, vol. 124, no. 6, p. 1866.

    Article  ADS  Google Scholar 

  2. Limonov, M.F., Rybin, M.V., Poddubny, A.N., et al., Nat. Photonics, 2017, vol. 11, no. 9, p. 543.

    Article  Google Scholar 

  3. Garrido Alzar, C.L., Martinez, M.A.G., and Nussenzveig, P., Am. J. Phys., 2002, vol. 70, no. 1, p. 37.

    Article  ADS  Google Scholar 

  4. Fan, S., Suh, W., and Joannopoulos, J.D., J. Opt. Soc. Am. A, 2003, vol. 20, no. 3, p. 569.

    Article  ADS  Google Scholar 

  5. Wang, F., Wang, X., Zhou, H., et al., Opt. Express, 2009, vol. 17, no. 9, p. 7708.

    Article  ADS  Google Scholar 

  6. Luk’yanchuk, B., Zheludev, N.I., Maier, S.A., et al., Nat. Mater., 2010, vol. 9, no. 9, p. 707.

    Article  ADS  Google Scholar 

  7. Chong, K.E., Hopkins, B., Staude, I., et al., Small, 2014, vol. 10, no. 10, p. 1985.

    Article  Google Scholar 

  8. Kuznetsov, A.I., Miroshnichenko, A.E., Brongersma, M.L., et al., Science, 2016, vol. 354, no. 6314, aag2472.

    Article  Google Scholar 

  9. Miroshnichenko, A.E., Flach, S., and Kivshar, Y.S., Rev. Mod. Phys., 2010, vol. 82, no. 3, p. 2257.

    Article  ADS  Google Scholar 

  10. Rahmani, M., Luk’yanchuk, B., and Hong, M., Laser Photonics Rev., 2013, vol. 7, no. 3, p. 329.

    Article  ADS  Google Scholar 

  11. Yu, Y., Xue, W., Semenova, E., et al., Nat. Photonics, 2017, vol. 11, no. 2, p. 81.

    Article  ADS  Google Scholar 

  12. Lu, H., Liu, X., Mao, D., et al., Opt. Lett., 2012, vol. 37, no. 18, p. 3780.

    Article  ADS  Google Scholar 

  13. Zhang, S., Bao, K., Halas, N.J., et al., Nano Lett., 2011, vol. 11, no. 4, p. 1657.

    Article  ADS  Google Scholar 

  14. Cetin, A.E. and Altug, H., ACS Nano, 2012, vol. 6, no. 11, p. 9989.

    Article  Google Scholar 

  15. Wu, C., Khanikaev, A.B., Adato, R., et al., Nat. Mater., 2012, vol. 11, no. 1, p. 69.

    Article  ADS  Google Scholar 

  16. Singh, R., Cao, W., Al-Naib, I., et al., Appl. Phys. Lett., 2014, vol. 105, no. 17, 171101.

    Article  ADS  Google Scholar 

  17. Dyshlyuk, A.V., Opt. Lett., 2019, vol. 44, no. 2, p. 231.

    Article  ADS  Google Scholar 

  18. Dyshlyuk, A.V., Eryusheva, U.A., and Vitrik, O.B., J. Lightwave Technol., 2020, vol. 38, no. 24, p. 6918.

    Article  ADS  Google Scholar 

  19. Novotny, L., Am. J. Phys., 2010, vol. 78, no. 11, p. 1199.

    Article  ADS  Google Scholar 

  20. Snyder, A.W. and Love, J., Optical Waveguide Theory, Berlin: Springer, 2012.

    Google Scholar 

  21. Johnson, P.B. and Christy, R.W., Phys. Rev. B, 1972, vol. 6, no. 12, p. 4370.

    Article  ADS  Google Scholar 

  22. Dyshlyuk, A.V., Vitrik, O.B., Kulchin, Yu.N., et al., J. Lightwave Technol., 2017, vol. 35, no. 24, p. 5425.

    Article  ADS  Google Scholar 

  23. Wang, P., Semenova, Yu., Wu, Q., et al., Appl. Opt., 2009, vol. 48, no. 31, p. 6044.

    Article  ADS  Google Scholar 

  24. Wang, P., Semenova, Yu., Li, Y., et al., Photonics Lett. Pol., 2010, vol. 2, no. 2, p. 67.

    Google Scholar 

  25. Kulchin, Y.N., Vitrik, O.B., and Gurbatov, S.O., Quantum Electron., 2011, vol. 41, no. 9, p. 821.

    Article  ADS  Google Scholar 

  26. Homola, J., Surface Plasmon Resonance Based Sensors, Heidelberg: Springer, 2006.

    Book  Google Scholar 

Download references

Funding

The presented study was supported by the Russian Foundation for Basic Research (grant no. 20-02-00556А).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Dyshlyuk.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dyshlyuk, A.V., Vitrik, O.B. Resonance Effects in the Bent Waveguide-Based Fabry–Perot Resonator with Mirrors of Spatially Varying Reflectivity. Bull. Russ. Acad. Sci. Phys. 86 (Suppl 1), S50–S59 (2022). https://doi.org/10.3103/S1062873822700381

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873822700381

Keywords:

Navigation