Skip to main content
Log in

Effect of the Temperature of Megaplastic Deformation in a Bridgman Chamber on the Formation of Structures and the Physicochemical Properties of Titanium (BT1-0)

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

The formation of regions corresponding to deformational fragments and dynamically recrystallized grains in the structure of the α-phase after torsion under high hydrostatical pressure at room and cryogenic temperatures is determined by means of transmission electron microscopy. Its applicability to describing defective structures of a two-phase mixture model is shown. In optimizing the results from mechanical and corrosion tests, it is found that two rounds of torsion treatment under hydrostatic pressure is sufficient to obtain the best possible properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Il’in, A.A., Kolachev, B.A., and Pol’kin, I.S., Titanovye splavy. Sostav, struktura, svoistva. Spravochnik (Titanium Alloys. Composition, Structure, Properties. Handbook), Moscow: VILS-MATI, 2009.

    Google Scholar 

  2. Tarasov, A.V., Metallurgiya titana (Titanium Metallurgy), Moscow: Akademkniga, 2003.

    Google Scholar 

  3. Rack, H.J. and Qazi, J.I., Mater. Sci. Eng. C, 2006, vol. 26, p. 1269.

    Article  Google Scholar 

  4. Sevast’yanov, V.I., Biosovmestimost’ (Biocompatibility), Moscow: VNIIIgeosistem, 1999.

    Google Scholar 

  5. Glezer, A.M., Phys.-Usp., 2012, vol. 55, no. 5, p. 522.

    Article  ADS  Google Scholar 

  6. Valiev, R.Z. and Aleksandrov, I.V., Nanostrukturnye materialy, poluchennye intensivnoi plasticheskoi deformatsiei (Nanostructural Materials Produced by Severe Plastic Deformation), Moscow: Logos, 2000.

    Google Scholar 

  7. Utyashev, F.Z., Deformatsionnye metody polucheniya i obrabotki ul’tramelkozerennykh materialov (Deformation Methods for Synthesis and Processing of Ultra-Fine-Grained Materials), Ufa: Gilem, 2013.

    Google Scholar 

  8. Valiev, R.Z., Estrin, Yu., Horita, Z., et al., JOM, 2006, vol. 58, no. 4, p. 33.

    Article  Google Scholar 

  9. Zhilyaev, A.P. and Langdon, T.G., Prog. Mater. Sci., 2008, vol. 53, p. 893.

    Article  Google Scholar 

  10. Rybin, V.V., Bol’shie plasticheskie deformatsii i razrushenie metallov (Large Plastic Deformation and Metal Failure), Moscow: Metallurgiya, 1986.

    Google Scholar 

  11. Pozdnyakov, V.A. and Glezer, A.M., Bull. Russ. Acad. Sci.: Phys., 2004, vol. 68, no. 10, p. 1621.

    Google Scholar 

  12. Zhang, J., Zhao, Y., Pantea, C., et al., J. Phys. Chem. Solids, 2005, vol. 66, p. 1213.

    Article  ADS  Google Scholar 

  13. Jamieson, J.C., Science, 1963, vol. 140, p. 72.

    Article  ADS  Google Scholar 

  14. Al’shevskii, Yu.L., Kul’nitskii, B.A., Konyaev, Yu.S., and Usikov, M.P., Fiz. Met. Metalloved., 1984, vol. 58, no. 4, p. 795.

    Google Scholar 

  15. Todaka, Y., Sasaki, J., Moto, T., and Umemoto, M., Scr. Mater., 2008, vol. 59, no. 6, p. 615.

    Article  Google Scholar 

  16. Perez-Prado, M.T., Gimazov, A.A., Ruano, O.A., et al., Scr. Mater., 2008, vol. 58, no. 3, p. 219.

    Article  Google Scholar 

  17. Perez-Prado, M.T. and Zhilyaev, A.P., Phys. Rev. Lett., 2009, vol. 102, p. 1775504.

    Article  ADS  Google Scholar 

  18. Bridgman, P.W., Studies in Large Plastic Flow and Fracture, New York: McGraw-Hill, 1952.

    MATH  Google Scholar 

  19. Zhilyaev, A.P., Galvez, F., Sharafutdinov, A., and Perez-Prado, M.T., Mater. Sci. Eng., A, 2010, vol. 527, p. 3918.

    Article  Google Scholar 

  20. Tane, M., Okuda, Y., Todaka, Y., et al., Acta Mater., 2013, vol. 61, p. 7543.

    Article  Google Scholar 

  21. Adachi, N., Todaka, Y., Suzuki, H., and Umemoto, M., IOP Conf. Ser.: Mater. Sci. Eng., 2015, vol. 82, p. 012020.

    Article  Google Scholar 

  22. Ivanisenko, Yu., Kilmametov, A., Rusner, H., and Valiev, R.Z., Int. J. Mater. Res., 2008, vol. 99, p. 1.

    Article  Google Scholar 

  23. Chen, Y.J., Li, Y.J., Walmsley, J.C., et al., J. Mater. Sci., 2012, vol. 47, p. 4838.

    Article  ADS  Google Scholar 

  24. Shirooyeh, M., Xu, J., and Langdon, T.G., Mater. Sci. Eng., A, 2014, vol. 614, p. 223.

    Article  Google Scholar 

  25. Sergueeva, A.V., Stolyarov, V.V., Valiev, R.Z., and Mukherjee, A.K., Scr. Mater., 2001, vol. 45, no. 7, p. 747.

    Article  Google Scholar 

  26. Popov, A.A. Pyshmintsev, I.Yu., et al., Scr. Mater., 1997, vol. 37, no. 7, p. 1089.

    Article  Google Scholar 

  27. Malysheva, S.P., Salishchev, G.A., Galeev, R.M., Danilenko, V.N., Myshlyaev, M.M., and Popov, A.A., Phys. Met. Metallogr., 2003, vol. 95, no. 4, p. 390.

    Google Scholar 

  28. Khlebnikova, Yu.V., Egorova, L.Yu., Pilyugin, V.P., Suaridze, T.R., and Patselov, A.M., Tech. Phys., 2015, vol. 60, no. 7, p. 1005.

    Article  Google Scholar 

  29. Zel’dovich, V.I., Frolova, N.Yu., Patselov, A.M., Gundyrev, V.M., Kheifets, A.E., and Pilyugin, V.P., Phys. Met. Metallogr., 2010, vol. 109, no. 1, p. 30.

    Article  ADS  Google Scholar 

  30. Humphreys, F.J. and Hatherly, M., Recrystallization and Related Annealing Phenomena, Amsterdam: Elsevier, 2004.

    Google Scholar 

  31. Glezer, A.M., in Osnovy plasticheskoi deformatsii nanostrukturnykh materialov (Fundamentals of Plastic Deformation of Nanostructural Materials), Glezer, A.M., Ed., Moscow: Fizmatlit, 2016, p. 206.

    Google Scholar 

  32. Glezer, A.M., Tomchuk, A.A., Sundeev, R.V., and Gorshenkov, M.V., Mater. Lett., 2015, vol. 161, p. 360.

    Article  Google Scholar 

  33. Glezer, A.M., Varyukhin, V.N., Tomchuk, A.A., and Maleeva, N.A., Bull. Russ. Acad. Sci.: Phys., 2014, vol. 78, no. 10, p. 1022.

    Article  Google Scholar 

  34. Chernyaeva, E.Yu. and Semenova, I.P., Vestn. Ufim. Gos. Aviats. Tekh. Univ., 2011, vol. 15, no. 1 (41), p. 105.

  35. Amirkhanova, N.A., Valiev, R.Z., Aleksandrov, I.V., et al., Vestn. Ufim. Gos. Aviats. Tekh. Univ., 2006, vol. 7, no. 3 (16), p. 42.

  36. Tomashov, N.D., Titan i korrozionnostoikie splavy na ego osnove (Titanium and Corrosion-Resistant Alloys Based on It), Moscow: Metallurgiya, 1985.

    Google Scholar 

  37. Glezer, A.M., Tomchuk, A.A., and Rassadina, T.V., Russ. Metall. (Engl. Transl.), 2015, vol. 2015, no. 4, p. 295.

    Article  ADS  Google Scholar 

  38. Metlov, L.S., Neravnovesnaya evolyutsionnaya termodinamika i ee prilozheniya (Inequilibrium Evolutionary Thermodynamics and Its Applications), Donetsk: Noulidzh, 2014.

    Google Scholar 

  39. Glezer, A.M. and Sundeev, R.V., Mater. Lett., 2015, vol. 139, p. 455.

    Article  Google Scholar 

  40. Glezer, A.M., Zaichenko, S.G., and Plotnikova, M.R., Bull. Russ. Acad. Sci.: Phys., 2012, vol. 76, p. 54.

    Article  Google Scholar 

  41. Glezer, A.M., Timshin, I.A., Shchetinin, I.V., et al., J. Alloys Compd., 2018, vol. 744, p. 791.

    Article  Google Scholar 

  42. Glezer, A.M., Rostovtsev, R.N., Tomchuk, A.A., and Shchetinin, I.V., Bull. Russ. Acad. Sci.: Phys., 2016, vol. 80, p. 1027.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Glezer.

Additional information

Original Russian Text © N.A. Shurygina, A.O. Cheretaeva, A.M. Glezer, D.L. D’yakonov, I.V. Chshetinin, R.V. Sundeev, A.A. Tomchuk, L.F. Muradimova, 2018, published in Izvestiya Rossiiskoi Akademii Nauk, Seriya Fizicheskaya, 2018, Vol. 82, No. 9, pp. 1226–1238.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shurygina, N.A., Cheretaeva, A.O., Glezer, A.M. et al. Effect of the Temperature of Megaplastic Deformation in a Bridgman Chamber on the Formation of Structures and the Physicochemical Properties of Titanium (BT1-0). Bull. Russ. Acad. Sci. Phys. 82, 1113–1124 (2018). https://doi.org/10.3103/S1062873818090204

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873818090204

Navigation