Skip to main content
Log in

Formation of PZT Structures on Silicon

  • Proceedings of the XXI National Conference on Magnetoelectrics Physics
  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

Properties of thin PbZr0.52Ti0.48O3 (PZT) films on silicon substrates with Al2O3 and HfO2 dielectric barrier layers and LaNiO3 (LNO) conducting layers are studied. Barrier layers 2–10 nm thick are deposited on silicon wafers by via atomic-layer deposition (ALD). LNO layers are formed via chemical solution deposition. The critical HfO2 thickness required to prevent diffusion (upon which a perovskite phase forms in PZT films) is found to be 10 nm. The annealing temperature required for the formation of LNO crystalline structure is determined. It is shown that depositing an LNO conducting layer directly onto a silicon surface allows us to obtain PZT films with good crystallinity and electrophysical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vorotilov, K.A., Mukhortov, V.M., and Sigov, A.S., Integrirovannye segnetoelektricheskie ustroistva (Integrated Ferroelectric Devices), Sigov, A.S., Ed., Moscow: Energoatomizdat, 2011.

  2. Kotova, N., Podgorny, Yu., Seregin, D., et al., Ferroelectrics, 2014, vol. 465, p.54.

    Article  Google Scholar 

  3. Melo, M., Araujo, E.B., Shvartsman, V.V., et al., J. Appl. Phys., 2016, vol. 120, p. 054101.

    Article  ADS  Google Scholar 

  4. Liu, C., Lin, S.X., Qin, M.H., et al., Appl. Phys. Lett., 2016, vol. 108, p. 112903.

    Article  ADS  Google Scholar 

  5. Ma, B., Hu, Z., Koritala, R.E., et al., J. Mater. Sci.: Mater. Electron., 2015, vol. 26, no. 12, p. 9279.

    Google Scholar 

  6. Boni, A.G., Chirila, C., Pasuk, I., et al., Thin Solid Films, 2015, vol. 593, p.124.

    Article  ADS  Google Scholar 

  7. Hu, Z., Ma, B., Liu, S., et al., Mater. Res. Bull., 2014, vol. 52, p.189.

    Article  Google Scholar 

  8. Seregin, D., Vorotilov, K., Sigov, A., and Kotova, N., Ferroelectrics, 2015, vol. 484, no. 1, p.43.

    Article  Google Scholar 

  9. Lu, G., Dong, H., Chen, J., and Cheng, J., J. Sol-Gel Sci. Technol., 2017, vol. 82, no. 2, p.530.

    Article  Google Scholar 

  10. Park, J.H., Kim, H.Y., Seok, K.H., et al., J. Appl. Phys., 2016, vol. 119, no. 12, p. 124108.

    Article  ADS  Google Scholar 

  11. Ma, B., Hu, Z., Koritala, R.E., et al., J. Mater. Sci.: Mater. Electron., 2015, vol. 26, p. 9279.

    Google Scholar 

  12. Narayanan, M., Kwon, D.-K., Ma, B., and Balachandran, U., Appl. Phys. Lett., 2008, vol. 92, p. 252905.

    Article  ADS  Google Scholar 

  13. Podgorny, Yu.V., Seregin, D.S., Sigov, A.S., and Vorotilov, K.A., Ferroelectrics, 2012, vol. 439, no. 1, p.56.

    Article  Google Scholar 

  14. Kotova, N.M., Vorotilov, K.A., Seregin, D.S., and Sigov, A.S., Inorg. Mater., 2014, vol. 50, no. 6, p.612.

    Article  Google Scholar 

  15. Tong, S., Narayanan, M., Ma, B., et al., Mater. Chem. Phys., 2013, vol. 140, p.427.

    Article  Google Scholar 

  16. Ma, B., Tong, S., Narayanan, M., et al., Mater. Res. Bull., 2011, vol. 46, p. 1124.

    Article  Google Scholar 

  17. Meng, X.J., Cheng, J.G., Sun, J.L., et al., J. Cryst. Growth, 2000, vol. 220, p.100.

    Article  ADS  Google Scholar 

  18. Meng, X.J., Sun, J.L., Yu, J., et al., Appl. Phys. A, 2001, vol. 73, p.323.

    Article  ADS  Google Scholar 

  19. Hu, S.H., Hu, G.J., Meng, X.J., et al., J. Cryst. Growth, 2004, vol. 260, p.109.

    Article  ADS  Google Scholar 

  20. Shturman, I., Shter, G.E., Etin, A., and Grader, G.S., Thin Solid Films, 2009, vol. 517, p. 2767.

    Article  ADS  Google Scholar 

  21. Kim, H., Kim, J.-H., and Choo, W.K., Integr. Ferroelectr., 2004, vol. 64, p.125.

    Article  Google Scholar 

  22. Lu, W., Zheng, P., Du, W., and Meng, Z., Mater. Electron., 2004, vol. 15, p. 739.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Seregin.

Additional information

Original Russian Text © D.S. Seregin, A.-M. Baziruvikha, N.M. Kotova, K.A. Vorotilov, L.A. Delimova, N.V. Zaitzeva, A.V. Myakon’kikh, K.V. Rudenko, V.F. Lukichev, 2018, published in Izvestiya Rossiiskoi Akademii Nauk, Seriya Fizicheskaya, 2018, Vol. 82, No. 3, pp. 390–394.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seregin, D.S., Baziruvikha, A.M., Kotova, N.M. et al. Formation of PZT Structures on Silicon. Bull. Russ. Acad. Sci. Phys. 82, 341–345 (2018). https://doi.org/10.3103/S1062873818030231

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873818030231

Navigation