Skip to main content
Log in

Peculiarities of Energy Circulation in Evanescent Field. Application for Red Blood Cells

  • Published:
Optical Memory and Neural Networks Aims and scope Submit manuscript

Abstract

New approaches of red blood cell (erythrocyte) controlling by the action of evanescent wave is proposed in the given research work. Theoretical and experimental models for describing the conditions of the erythrocyte transverse motion and the vertical spin realization have been analyzed in the special selected schemes. The use of a linearly polarized plane wave with azimuth of \( \pm \)45° in a model experiment, specially suggested in this work, allows visualizing the transverse controlled motion of the erythrocyte, which enables to claim about new possibilities for controlling microobjects in biology and medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Xin, H. and Li, B., Targeted delivery and controllable release of nanoparticles using a defect-decorated optical nanofiber, Opt. Express, 2011, vol. 19, no. 14, pp. 13285–13290.

    Article  Google Scholar 

  2. Dholakia, K. and Reece, P., Optical micromanipulation takes hold, Nano Today, 2006, vol. 1, no. 1, pp. 18–27.

    Article  Google Scholar 

  3. Wang, M.D., Yin, H., Landick, R., Gelles, J., and Block, S.M., Stretching DNA with optical tweezers, Biophys. J., 1997, vol. 72, no. 3, pp. 1335–1346.

    Article  Google Scholar 

  4. Bustamante, C., Bryant, Z., and Smith, S.B., Ten years of tension: Single-molecule DNA mechanics, Nature, 2003, vol. 421, no. 6921, pp. 423–427.

    Article  Google Scholar 

  5. Altman, D., Sweeney, H.L., and Spudich, J.A., The mechanism of myosin VI translocation and its load-induced anchoring, Cell, 2004, vol. 116, no. 5, pp. 737–749.

    Article  Google Scholar 

  6. Asbury, C.L., Fehr, A.N., and Block, S.M., Kinesin moves by an asymmetric hand-over-hand echanism, Science, 2003, vol. 302, no. 5653, pp. 2130–2134.

    Article  Google Scholar 

  7. Nitsovich, B.M., Zenkova, C.Yu., and Derevynchuk, O.V., Magneto-optical correlation of the exciton series, Proc. SPIE, 2002, vol. 4607, pp. 332–338.

    Article  Google Scholar 

  8. Nitsovich, B.M. and Zenkova, K.Yu., Polarization anomalies of exciton spectra, Phys. Solid State, 1996, vol. 38, no. 3, pp. 897–898.

    Google Scholar 

  9. Zenkova, C.Yu., Kramar, V.M., and Kramar, N.K., Polarization optical bistability in layer crystals, Proc. Symp. Photonics Technol., 2006, pp. 254–257.

  10. Zenkova, C.Yu., Gorsky, M.P., Ryabiy, P.A., and Gruia, I., Different approaches to phase restoration of distant complex optical fields, Opt. Appl., 2015, vol. 45, no. 2, pp. 139–150.

    Google Scholar 

  11. Zenkova, C.Yu., Gorsky, M.P., and Ryabyi, P.A., The phase problem solving by the use of optical correlation algorithm for reconstructing phase skeleton of complex optical fields, Proc. SPIE, 2015, vol. 9258, pp. 92582B-2–92582B-6.

  12. Zenkova, C.Yu., Gorsky, M.P., Ryabiy, P.A., and Angelskaya, A.O., Additional approaches to solving the phase problem in optics, Appl. Opt., 2016, vol. 55, no. 12, pp. B78–B84.

    Article  Google Scholar 

  13. Zenkova, C.Yu., Gorsky, M.P., and Ryabiy, P.A., Pseudo-phase mapping of speckle fields using 2D Hilbert transformation, Opt. Appl., 2016, vol. 46, no. 1, pp. 153–162.

    Google Scholar 

  14. Angelsky, O.V., Zenkova, C.Yu., Gorsky, M.P., and Ryabyi, P.A., Search for methods of restoring spatial phase distribution of complex optical fields, Open Opt. J., 2014, vol. 8, pp. 3–13.

    Article  Google Scholar 

  15. Zenkova, C.Yu., Gorsky, M.P., and Ryabyj, P.A., Phase retrieval of speckle fields based on 2D Hilbert transform, Opt. Mem. Neural Networks, 2015, vol. 24, no. 4, pp. 303–308.

    Article  Google Scholar 

  16. Zenkova, C.Yu., Gorsky, M.P., and Riabyi, P.A., Methods of restoring spatial phase distribution of complex optical fields in the approximation of singular optics, Rom. Rep. Phys., 2015, vol. 67, no. 4, pp. 1401–1411.

    Google Scholar 

  17. Zenkova, C.Yu., Gorsky, M.P., Soltys, I.V., and Angelsky, P.O., Use of motion peculiarities of test particles for estimating degree of coherence of optical fields, Ukr. J. Phys. Opt., 2012, vol. 13, no. 4, pp. 183–195.

    Article  Google Scholar 

  18. Zenkova, C.Yu., Interconnection of polarization properties and coherence of optical fields, Appl. Opt., 2014, vol. 53, no. 10, pp. B43–B52.

    Article  Google Scholar 

  19. Zenkova, C.Yu., Soltys, I.V., and Angelsky, P.O., The use of motion peculiarities of particles of the Rayleigh light scattering mechanism for defining the coherence properties of optical fields, Opt. Appl., 2013, vol. 43, no. 2, pp. 297–312.

    Google Scholar 

  20. Byrne, G.D., Pitter, M.C., Hang, J.Z., Falcone, F.H., Stolnik, S., and Somekh, M.G., Total internal reflection microscopy for live imaging of cellular uptake of sub-micron non-fluorescent particles, J. Microsc., 2008, vol. 231, no. 1, pp. 168–179.

    Article  MathSciNet  Google Scholar 

  21. Tuchin, V., Opticheskaya biomeditsinskaya diagnostika (Optical Biomedical Diagnostics), Moscow: Fizmatlit, 2006, vol. 1.

  22. Kugeyko, M.M. and Smunyov, D.A., Determination of microphysical parameters of native erythrocytes on the results of measuring the optical characteristics of scattered radiation, Vestn. Belarus. Gos. Univ., 2016, vol. 1, no. 2, p. 73.

    Google Scholar 

  23. Yurkin, M.A., Modelling of light scattering by blood cells using the discrete dipoles method, Cand. Sci. (Phys.–Math.) Dissertation, Novosibirsk, 2008.

  24. Gu, M., Kuriakose, S., and Gan, X., A single beam near-field laser trap for optical stretching, folding and rotation of erythrocytes, Opt. Express, 2007, vol. 15, no. 3, pp. 1369–1375.

    Article  Google Scholar 

  25. Hayata, A., Balthasar Muellera, J.P., and Capassoa, F., Lateral chirality-sorting optical forces, Proc. Natl. Acad. Sci. U. S. A., 2015, vol. 112, no. 43, pp. 13190–13194.

    Article  Google Scholar 

  26. Angelsky, O.V., Hanson, S.G., Maksimyak, P.P., Maksimyak, A.P., Zenkova, C.Yu., Polyanskii, P.V., and Ivanskyi, D.I., Influence of evanescent wave on birefringent microplates, Opt. Express, 2017, vol. 25, no. 3, pp. 2299–2311.

    Article  Google Scholar 

  27. Bliokh, K.Y., Bekshaev, A.Y., and Nori, F., Dual electromagnetism: Helicity, spin, momentum, and angular momentum, New J. Phys., 2013, vol. 15, p. 033026.

    Article  Google Scholar 

  28. Antognozzi, M., Bermingham, C.R., Hoerber, H., Dennis, M.R., Bekshaev, A.Ya., Harniman, R.L., Simpson, S., Senior, J., Bliokh, K.Y., and Nori, F., Direct measurements of the extraordinary optical momentum and transverse spin-dependent force using a nano-cantilever, Nat. Phys., 2016, vol. 12, pp. 731–735.

    Article  Google Scholar 

  29. Zenkova, C.Yu., Ivanskyi, D.I., and Kiyashchuk, T.V., Optical torques and forces in birefringent microplate, Opt. Appl., 2017, vol. 47, no. 3, pp. 483–493.

    Google Scholar 

  30. Zenkova, C.Yu. and Ivanskyi, D.I., Non-trivial structure of optical momentum and optical forces inherent in evanescent waves, Proc. SPIE, 2018, vol. 10612.

  31. Angelsky, O.V., Zenkova, C.Yu., and Ivanskyi, D.I., Mechanical action of the transverse spin momentum of an evanescent wave on gold nanoparticles in biological objects media, J. Optoelectron. Adv. Mater., 2018, vol. 20, nos. 5–6, pp. 217–223.

    Google Scholar 

  32. Zenkova, C.Yu., Ivanskyi, D.I., and Tkachuk, V.M., Analysis of the mechanism of the vertical spin formation for the evanescent wave in the near-surface layer of biological tissue fluid, Proc. SPIE, 2018, vol. 10723, pp. 1072334-1–1072334-9.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Angelsky.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Angelsky, O.V., Zenkova, C.Y., Maksymyak, P.P. et al. Peculiarities of Energy Circulation in Evanescent Field. Application for Red Blood Cells. Opt. Mem. Neural Networks 28, 11–20 (2019). https://doi.org/10.3103/S1060992X19010028

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1060992X19010028

Keywords:

Navigation