Skip to main content
Log in

Hardening Mechanisms in Stainless Steel/Aluminum Bronze Composite Fabricated Using Electron Beam Additive Manufacturing

  • Published:
Steel in Translation Aims and scope

Abstract

The authors investigated the features of structural-phase state of a composite based on stainless austenitic steel with addition of 25% (vol.) aluminum bronze. The composite was obtained by electron beam additive technology with simultaneous feeding of two wires. The paper considers analysis of the structural-phase state and mechanical characteristics. The contributions of various mechanisms to the composite hardening were evaluated. It was established that a multiphase structure is formed in the steel–25% bronze composite, which consists of 43.9% austenite, 32.0% ferrite and 24.2% bronze. Dispersion-hardened copper particles with 47 vol % content precipitated inside the austenite grains while only 20 vol % of the dispersion-hardening NiAl particles precipitated in the ferrite grains. Transmission electron microscopy data indicate a coherent conjugation between crystalline lattices of these dispersion hardening particles and matrix. Such a composite structure provides 50%, on average, improvement of the tensile strength compared to that of austenitic steel obtained by electron beam additive technology without the addition of aluminum bronze. It was found that the contributions of various hardening mechanisms to yield strength of austenite, ferrite and bronze amounted to 959.3, 972.7 and 408.7 MPa, respectively. Bronze grains do not make a significant contribution to increase of the yield strength of the composite, except for its increase due to dislocation hardening. The main contributions to the increase of the composite yield strength are made by austenite grains due to grain-boundary, dispersion and dislocation hardening, and by ferrite grains due to grain-boundary, solid-solution and dislocation hardening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Trefilov, V.I., Moiseev, V.F., Pechkovskii, E.P., Gornaya, I.D., and Vasil’ev, A.D., Deformatsionnoe uprochnenie i razrushenie polikristallicheskikh materialov (Deformation Hardening and Destruction of Polycrystalline Materials), Kiev: Naukova Dumka, 1987.

  2. Gol’dshtein, M.I. and Farber, V.M., Dispersionnoe uprochnenie stali (Dispersion Hardening of Steel), Moscow: Metallurgiya, 1979.

  3. Polekhina, N.A., Litovchenko, I.Yu., Kravchenko, D.A., Tyumentsev, A.N., Chernov, V.M., and Leont’eva-Smirnova, M.V., Strengthening mechanisms of 12% Cr ferritic-martensitic steels depending on the heat treatment mode, Vestn. Tambov. Univ. Ser. Estestv. Tekh. Nauki, 2016, vol. 21, no. 3, pp. 1246–1249. https://doi.org/10.20310/1810-0198-2016-21-3-1246-1249

    Article  Google Scholar 

  4. Kuznetsov, P.V., Panin, V.E., and Gal’chenko, N.K., Hardening mechanism in low-carbon low-alloy steels with a simultaneous increase in ductility and fracture toughness, Phys. Mesomech., 2020, vol. 23, no. 4, pp. 347–353.https://doi.org/10.1134/S1029959920040098

    Article  Google Scholar 

  5. Aksenova, K.V., Nikitina, E.N., Ivanov, Yu.F., and Kosinov, D.A., Strain hardening of bainitic and martensitic steel in compression, Steel Transl., 2018, vol. 48, no. 10, pp. 631–636. https://doi.org/10.3103/S0967091218100029

    Article  Google Scholar 

  6. Morales, E.V., Betancourt, G., Fernandes, J.R., Batista, G.Z., and Bott, I.S., Hardening mechanisms in a high wall thickness sour service pipe steel API 5L X65 before and after postwelding heat treatments, Mater. Sci. Eng., A, 2022, vol. 851, p. 143612. https://doi.org/10.1016/j.msea.2022.143612

    Article  CAS  Google Scholar 

  7. Zhang, D., Zhang, M., Lin, R., Liu, G., Li, J., and Feng, Y., Strengthening and strain hardening mechanisms of a plain medium carbon steel by multiscale lamellar structures, Mater. Sci. Eng., A, 2021, vol. 827, p. 142091. https://doi.org/10.1016/j.msea.2021.142091

    Article  CAS  Google Scholar 

  8. Dhua, S.K., Ray, A., and Sarma, D.S., Effect of tempering temperatures on the mechanical properties and microstructures of HSLA-100 type copperbearing steels, Mater. Sci. Eng., A, 2001, vol. 318, nos. 1–2, pp. 197–210. https://doi.org/10.1016/S0921-5093(01)01259-X

    Article  Google Scholar 

  9. Jain, D., Isheim, D., Hunter, A.H., and Seidman, D.N., Multicomponent high-strength low-alloy steel precipisation-strengthened by sub-nanometric Cu precipitates and M2C carbides, Metall. Mater. Trans. A, 2016, vol. 47, no. 8, p. 3860–3872. https://doi.org/10.1007/s11661-016-3569-5

    Article  CAS  Google Scholar 

  10. Fine, M.E., Vaynman, S., Isheim, D., Chung, Y.-W., Bhat, S.P., and Hahin, C.H., A new paradigm for designing high-fracture-energy steels, Metall. Mater. Trans. A, 2010, vol. 41, pp. 3318–3325. https://doi.org/10.1007/s11661-010-0485-y

    Article  CAS  Google Scholar 

  11. Sun, H., Li, D., Diao, Y., He, Y., Yan, L., Pang, X., and Gao, K., Nanoscale Cu particle evolution and its impact on the mechanical properties and strengthening mechanism in precipitation-hardening stainless steel, Mater. Charact., 2022, vol. 188, p. 111885. https://doi.org/10.1016/j.matchar.2022.111885

    Article  CAS  Google Scholar 

  12. Dong, H., Li, Z.C., Somani, M.C., and Misra, R.D.K., The significance of phase reversion-induced nanograined/ultrafine-grained (NG/UFG) structure on the strain hardening behavior and deformation mechanism in copper-bearing antimicrobial austenitic stainless steel. J. Mech. Behav. Biomed. Mater., 2021, vol. 119, p. 104489. https://doi.org/10.1016/j.jmbbm.2021.104489

    Article  CAS  Google Scholar 

  13. Kong, H.J., Xu, C., Bu, C.C., Da, C., Luan, J.H., Jiao, Z.B., Chen, G., and Liu, C.T., Hardening mechanisms and impact toughening of a high-strength steel containing low Ni and Cu additions, Acta Mater., 2019, vol. 172, pp. 150–160. https://doi.org/10.1016/j.actamat.2019.04.041

    Article  CAS  Google Scholar 

  14. Gol’dshtein, M.I., Litvinov, V.S., and Bronfin, B.M., Metallofizika vysokoprochnykh splavov (Metallophysics of High-Strength Alloys), Moscow: Metallurgiya, 1986.

  15. Trishkina, L.I., Cherkasova, T.V., Popova, N.A., Koneva, N.A., Gromov, V.E., and Aksenova, K.V., Dislokatsionnyi ansambl’. Skalyarnaya plotnost’ dislokatsii i ee komponenty (Dislocation Ensemble: Scalar Dislocation Density and Its Components), Novokuznetsk: Sib. Gos. Ind. Univ., 2019.

  16. Zykova, A.P., Panfilov, A.O., Chumaevskii, A.V., Vorontsov, A.V., Nikonov, S.Yu., Moskvichev, E.N., Gurianov, D.A., Savchenko, N.L., Tarasov, S.Yu., and Kolubaev, E.A., Formation of microstructure and mechanical characteristics in electron beam additive manufacturing of aluminum bronze with an in-situ adjustment of the heat input, Russ. Phys. J., 2022, vol. 65, no. 5, pp. 811–817. https://doi.org/10.1007/s11182-022-02701-6

    Article  CAS  Google Scholar 

  17. Perevalova, O.B., Konovalova, E.V., and Koneva, N.A., Effect of aluminum concentration on the lattice parameters and mean-square displacements of atoms in Cu–Al and Ti–6Al–4V alloys, Bull. Russ. Acad. Sci.: Phys., 2019, vol. 83, no. 6, pp. 693–696. https://doi.org/10.3103/S1062873819060236

    Article  CAS  Google Scholar 

  18. Jahanafrooz, A., Hasan, F., Lorimer, G.W., and Ridley, N., Microstructural development in complex nickel–aluminum bronzes, Metall. Mater. Trans. A, 1983, vol. 14, pp. 1951–1956. https://doi.org/10.1007/BF02662362

    Article  Google Scholar 

  19. Dharmendra, C., Hadadzadeh, A., Amirkhiz, B.S., Janaki, RamG.D., and Mohammadi, M., Microstructural evolution and mechanical behavior of nickel aluminum bronze Cu–9Al–4Fe–4Ni–1Mn fabricated through wirearc additive manufacturing, Addit. Manuf., 2019, vol. 30, p. 100872. https://doi.org/10.1016/j.addma.2019.100872

    Article  CAS  Google Scholar 

  20. Bolling, G.F. and Fainstein, D., On vacancy condensation and the origin of dislocations in growth from the melt, Philos. Mag.: J. Theor. Exp. Appl. Phys., 1972, vol. 25, no. 1, pp. 45–66. https://doi.org/10.1080/14786437208229214

    Article  CAS  Google Scholar 

  21. Zhilyaev, A.P., Shakhova, I., Morozova, A., Belyakov, A., and Kaibyshev, R., Grain refinement kinetics and strengthening mechanisms in Cu–0.3Cr–0.5Zr alloy subjected to intense plastic deformation, Mater. Sci. Eng., A, 2016, vol. 654, pp. 131–142. https://doi.org/10.1016/j.msea.2015.12.038

    Article  CAS  Google Scholar 

  22. Vorontsov, A., Astafurov, S., Melnikov, E., Moskvina, V., Kolubaev, E., and Astafurova, E., The microstructure, phase composition and tensile properties of austenitic stainless steel in a wire-feed electron beam melting combined with ultrasonic vibration, Mater. Sci. Eng., A, 2021, vol. 820, p. 141519. https://doi.org/10.1016/j.msea.2021.141519

    Article  CAS  Google Scholar 

  23. Koneva, N.A. and Kozlov, E.V., Regularities of substructural hardening, Sov. Phys. J., 1991, vol. 34, pp. 224–236. https://doi.org/10.1007/BF00894926

    Article  Google Scholar 

Download references

ACKNOWLEDGEMENTS

The authors express their gratitude to Professor A.I. Lotkov for valuable comments on the article.

Funding

The work was performed within the framework of the state task of the Institute of Strength Physics and Materials Science, Siberian Branch of the Russian Academy of Sciences, projects FWRW-2021-0012. The research was carried out using the equipment of the Central Research Center “Nanotech” of the Institute of Strength Physics and Materials Science, Siberian Branch of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. P. Zykova, A. O. Panfilov, A. V. Vorontsov, E. A. Kolubaev or S. Yu. Tarasov.

Ethics declarations

The authors declare that they have no conflicts of interes.

Additional information

Translated by F. Baron

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zykova, A.P., Panfilov, A.O., Vorontsov, A.V. et al. Hardening Mechanisms in Stainless Steel/Aluminum Bronze Composite Fabricated Using Electron Beam Additive Manufacturing. Steel Transl. 52, 912–919 (2022). https://doi.org/10.3103/S0967091222100163

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0967091222100163

Keywords:

Navigation