Skip to main content
Log in

Effect of Electrolytic-Plasma Nitrocarburizing on the Structural and Phase State of Ferrite-Pearlitic Steels

  • Published:
Steel in Translation Aims and scope

Abstract

Using transmission electron microscopy (TEM), phase composition and fine texture changes in the ferrite-pearlitic steels 0.18C–1Cr–3Ni–1Mo–Fe, 0.3C–1Cr–1Mn–1Si–Fe and 0.34C–1Cr–1Ni–1Mo–Fe due to electrolytic plasma nitrocarburizing has been studied in thin foils. The procedure of electrolytic-plasma enhanced nitrocarburizing has been performed by steel surface saturation with nitrogen and carbon in an aqueous solution at a temperature of 800–860°C for 5 min. All the steels under investigation have been studied before and after the nitrocarburizing procedure. In the initial state, the steels were discovered to be composed of a pearlitic and ferritic grain mixture. The nitrocarburizing procedure leads to the formation of modified layers. Thus, the greater is the amount of pearlite before nitrocarburizing, the thicker is the modified layer. Nitrocarburizing results in significant qualitative changes in the phase state and the steel structure. In the modified layer surface area alongside the matrix, the particles of other phases such as carbides, nitrides and carbonitrides occur. As the distance from the surface of a nitrocarburized sample increases, the phases of set and volume decrease, whereas the only carbide phase—cementite—occurs at the end of modified layer in the case of all the steels. After nitrocarburizing, the matrix of all the steels represents tempered lath and lamellar martensite. In the nitrocarburized layer surface zone, the volume fractions of lath and lamellar martensite depend on the initial steel state: the greater is the amount of pearlite in steel, the less is the amount of lath martensite; then a greater amount of lamellar martensite is formed. Such a dependence is not observed in the nitrocarburized layer central zone, whereas the volume fractions of lath and lamellar martensite at the end of the layer are close to each other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Boonruang, Ch., Kumpangkeaw, W., Sopunna, K., Chomsaeng, N., and Narksitipan, S., Effect of carburizing via current heating technique on the near surface microstructure of AISI 1020 steel, Chiang Mai J. Sci., 2012, vol. 39, no. 2, pp. 254–262.

    CAS  Google Scholar 

  2. Bondarev, A.A., Tyurin, Yu.N., Pogrebnyak, A.D., Kolisnichenko, O.V., and Duda, I.M., Effect of pulsed plasma and electron beam processing of surface of wear-resistant coatings based on Ni on their functional properties, Uprochnyayushchie Tekhnol. Pokrytiya, 2012, no. 4, pp. 16–20.

  3. Dudareva, N.Yu., Effect of microarc oxidation modes on properties of formed surface, Vestnik Ufimsk. Gos. Aviats. Tekh. Univ., 2013, vol. 17, no. 3, pp. 217–222.

    Google Scholar 

  4. Grin’, R.R., Gallyamova, R.F., Dudareva, N.Yu., Sirenko, A.A., and Musin, F.F., Structural features of modified layer obtained by microarc oxidation on AK12D alloy, Pis’ma o Mater., 2014, vol. 4, no. 3, pp. 175–178.

  5. Grigor’yants, A.G., Tret’yakov, R.S., and Funtikov, V.A., Improving quality of surface layers of parts obtained by laser additive technology, Tekhnol. Mashinostr., 2015, no. 10, pp. 68–73.

  6. Kovaleva, M., Tyurin, Yu., Vasilik, N., Kolisnichenko, O., Prozorova, M., Arseenko, M., Yapryntsev, M., Sirota, V., and Pavlenko, I., Effect of processing parameters on the microstructure and properties of WC–10Co–4Cr coatings formed by a new multi-chamber gas-dynamic accelerator, Ceram. Int., 2015, vol. 41, no. 10, pp. 15067–15074.

    Article  CAS  Google Scholar 

  7. Kiseleva, S.K., Zaynullina, L.I., and Dudareva, N.Y., Influence of the microstructure Al–12% Si alloy on the properties of the oxide layer formed with MAO, Mater. Sci. Forum, 2016, vol. 870, pp. 481–486.

    Article  Google Scholar 

  8. Muboyadzhyan, S.A. and Budinovskii, S.A., Ion-plasma technology: promising processes, coatings, equipment, Aviats. Mater. Tekhnol., 2017, no. 5, pp. 39–54.

  9. Yerokhin, A.L., Nie, X., Leyland, A., Matthews, A., and Dowey, S.J., Plasma electrolysis for surface engineering, Surf. Coat. Technol., 1999, vol. 122, nos. 2–3, pp. 73–93.

    Article  CAS  Google Scholar 

  10. Gupta, P., Tenhundfeld, G., Daigle, E.O., and Ryabkov, D., Electrolytic plasma technology: Science and engineering—an overview, Surf. Coat. Technol., 2007, vol. 201, no. 21, pp. 8746–8760.

    Article  CAS  Google Scholar 

  11. Belkin, P.N. and Kusmanov, S.A., Plasma electrolytic hardening of steels: review, Surf. Eng. Appl. Electrochem., 2016, vol. 52, no. 6, pp. 531–546.

    Article  Google Scholar 

  12. Rakhimyanov, Kh.M. and Eremina, A.S., Installation for chemical-thermal treatment in electrolyte plasma, Sb. Nauchn. Tr. Novosib. Gos. Tekh. Univ., 2006, no. 3 (45), pp. 141–144.

  13. Kulikov, I.S., Vashchenko, S.V., and Kamenev, A.Ya., Elektrolitno-plazmennaya obrabotka materialov (Electrolytic-Plasma Processing of Materials), Minsk: Belaruskaya Navuka, 2010, 232 p.

  14. Kusmanov, S.A., Shadrin, S.Yu., and Belkin, P.N., Carbon transfer from aqueous electrolytes to steel by anode plasma electrolytic carburizing, Surf. Coat. Technol., 2014, vol. 258, pp. 727–733.

    Article  CAS  Google Scholar 

  15. Alfereva, T.I., Belkin, P.N., and Zhirov, A.V., Rapid cementation of steel from a coating under anodic electrolytic heating conditions, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech., 2015, vol. 9, no. 2, pp. 313–316.

    Article  CAS  Google Scholar 

  16. Belkin, P.N., Kusmanov, S.A., Dyakov, I.G., Komissarova, M.R., and Parfenyuk, V.I., Anode plasma electrolytic carburizing of commercial pure titanium, Surf. Coat. Technol., 2016, vol. 307, pp. 1303–1309.

    Article  CAS  Google Scholar 

  17. Skakov, M., Rakhadilov, B., Batyrbekov, E., and Scheffner, M., Change of structure and mechanical properties of R6M5 steel surface layer at electrolytic-plasma nitriding, Adv. Mater. Res., 2014, vol. 1040, pp. 753–758.

    Article  CAS  Google Scholar 

  18. Kusmanov, S.A., Smirnov, A.A., Silkin, S.A., and Belkin, P.N., Modification of low-alloy steel surface by plasma electrolytic nitriding, J. Mater. Eng. Perform., 2016, vol. 25, no. 7, pp. 2576–2582.

    Article  CAS  Google Scholar 

  19. Belkin, P.N. and Kusmanov, S.A., Plasma electrolytic nitriding of steels, J. Surf. Invest., 2017, vol. 11, no. 4, pp. 767–789.

    Article  CAS  Google Scholar 

  20. Kusmanov, S.A., Kusmanova, Yu.V., Naumov, A.R., and Belkin, P.N., Features of anode plasma electrolytic nitrocarburising of low carbon steel, Surf. Coat. Technol., 2015, vol. 272, pp. 149–157.

    Article  CAS  Google Scholar 

  21. Kusmanov, S.A., Dyakov, I.G., Kusmanova, Yu.V., and Belkin, P.N., Surface modification of low-carbon steels by plasma electrolytic nitrocarburising, Plasma Chem. Plasma Process., 2016, vol. 36, no. 5, pp. 1271–1286.

    Article  CAS  Google Scholar 

  22. Kusmanov, S.A., Grishina, E.P., Belkin, P.N., Kusmanova, Y.V., and Kudryakova, N.O., Raising the corrosion resistance of low-carbon steels by electrolytic-plasma saturation with nitrogen and carbon, Met. Sci. Heat Treat., 2017, vol. 59, nos. 1–2, pp. 117–123.

    Article  CAS  Google Scholar 

  23. Suminov, I.V., Belkin, P.N., Epel’fel’d, A.V., Lyudin, V.B., Krit, B.L., and Borisov, A.M., Plazmenno-elektroliticheskoe modifitsirovanie poverkhnosti metallov i splavov (Plasma-Electrolytic Surface Modification of Metals and Alloys), Moscow: Tekhnosfera, 2011, vol. 1.

  24. Popova, N.A., Zhurerova, L.G., Nikonenko, E.L., and Skakov, M.K., Effect of plasma electrolytic nitrocarburizing on phase composition of 0.3C–1Mn–1Si–Fe steel, Inorg. Mater.: Appl. Res., 2017, vol. 8, no. 1, pp. 130–135.

    Article  Google Scholar 

  25. Popova, N.A., Erygina, L.A., Nikonenko, E.L., Skakov, M.K., Koneva, N.A., and Kozlov, E.V., Phase transformations in 0.34C–1Cr–1Ni–1Mo–Fe steel under the action of electrolytic plasma nitrocarburizing, Bull. Russ. Acad. Sci.: Phys., 2017, vol. 81, no. 3, pp. 354–356.

    Article  CAS  Google Scholar 

  26. Popova, N.A., Nikonenko, E.L., Erbolatova, G.U., Kalashnikov, M.P., and Skakov, M.K., Phase transformations in 40KhNYu alloy at plasma chemical-thermal treatment, Fundam. Probl. Sovrem. Materialoved., 2018, vol. 15, no. 3, pp. 339–347.

  27. Kozlov, E.V., Popova, N.A., Kabanina, O.V., Klimashin, S.I., and Gromov, V.E., Evolyutsiya fazovogo sostava, defektnoi struktury, vnutrennikh napryazhenii i pereraspredelenie ugleroda pri otpuske litoi konstruktsionnoi stali (Evolution of Phase Composition, Defective Structure, Internal Stresses and Redistribution of Carbon during Tempering of Cast Structural Steel), Novokuznetsk: Sib. Gos. Ind. Univ., 2007.

  28. Ivanov, Yu.F. and Kozlov, E.V., Bulk and surface quenching of structural steel: Morphological analysis of the structure, Russ. Phys. J., 2002, vol. 45, no. 3, pp. 209–231.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. A. Popova, E. L. Nikonenko, A. V. Nikonenko, V. E. Gromov or O. A. Peregudov.

Additional information

Translated by O. Polyakov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popova, N.A., Nikonenko, E.L., Nikonenko, A.V. et al. Effect of Electrolytic-Plasma Nitrocarburizing on the Structural and Phase State of Ferrite-Pearlitic Steels. Steel Transl. 49, 671–677 (2019). https://doi.org/10.3103/S0967091219100127

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0967091219100127

Keywords:

Navigation