Skip to main content
Log in

The Role of Zinc-Finger Antiviral Proteins in Immunity against Viruses

  • REVIEWS
  • Published:
Molecular Genetics, Microbiology and Virology Aims and scope Submit manuscript

Abstract

The Zinc finger antiviral proteins (ZAP) are expressed by the cells in response to different viral attacks. The ZAP marks the viral mRNA for degradation with the help of different cellular proteins for exosome. Beside the degradation of viral mRNA, the ZAP protein also inihibits translation of proteins from this mRNA. Although it is not a universal antiviral protein, but a number of important human pathogenic viruses are controlled by the ZAP protein. In this review article we have discussed the current progress made in understanding the structure, function, mechanism and therapeutic roles of the ZAP protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Berg, J.M., Zinc fingers and other metal-binding domains. Elements for interactions between macromolecules, J. Biol. Chem., 1990, vol. 265, pp. 6513–6516.

    CAS  PubMed  Google Scholar 

  2. Liang, J., Song, W., Tromp, G., Kolattukudy, P.E., and Fu, M., Genome-wide survey and expression profiling of CCCH-zinc finger family reveals a functional module in macrophage activation, PLoS One, 2008, vol. 3, no. 8, p. e2880. https://doi.org/10.1371/journal.pone.0002880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Najafabadi, H.S., Mnaimneh, S., Schmitges, F.W., Garton, M., Lam, K.N., Yang, A., Albu, M., Weirauch, M.T., Radovani, E., Kim, P.M., Greenblatt, J., Frey, B.J., and Hughes, T.R., C2H2 zinc finger proteins greatly expand the human regulatory lexicon, Nat. Biotechnol., 2015, vol. 33, pp. 555–562. https://doi.org/10.1038/nbt.3128

    Article  CAS  PubMed  Google Scholar 

  4. Schmitges, F.W., Radovani, E., Najafabadi, H.S., Barazandeh, M., Campitelli, L.F., Yin, Y., Jolma, A., Zhong, G., Guo, H., Kanagalingam, T., Dai, W.F., Taipale, J., Emili, A., Greenblatt, J.F., and Hughes, T.R., Multiparameter functional diversity of human C2H2 zinc finger proteins, Genome Res., 2016, vol. 26, pp. 1742–1752. https://doi.org/10.1101/gr.209643.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Klug, A., The discovery of zinc fingers and their applications in gene regulation and genome manipulation, Annu. Rev. Biochem., 2010, vol. 79, pp. 213–231. https://doi.org/10.1146/annurevbiochem-010909-095056

    Article  CAS  PubMed  Google Scholar 

  6. Mackay, J.P. and Crossley, M., Zinc fingers are sticking together, Trends Biochem. Sci., 1998, vol. 23, pp. 1–4.

    Article  CAS  Google Scholar 

  7. Mao, R., Nie, H., Cai, D., Zhang, J., Liu, H., Yan, R., Cuconati, A., Block, T.M., Guo, J.T., and Guo, H., Inhibition of hepatitis B virus replication by the host zinc finger antiviral protein, PLoS Pathog., 2013, vol. 9, p. e1 003 494. https://doi.org/10.1371/journal.ppat.1003494

    Article  CAS  Google Scholar 

  8. Fu, M. and Blackshear, P.J., RNA-binding proteins in immune regulation: A focus on CCCH zinc finger proteins, Nat. Rev. Immunol., 2016, vol. 17, pp. 130–143. https://doi.org/10.1038/nri.2016.129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Todorova, T., Bock, F.J., and Chang, P., PARP13 regulates cellular mRNA post-transcriptionally and functions as a pro-apoptotic factor by destabilizing TRAILR4 transcript, Nat. Commun., 2014, vol. 5, p. 5362. https://doi.org/10.1038/ncomms6362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gao, G., Inhibition of tetroviral RNA production by ZAP, a CCCH-type zinc finger protein, Science, 2002, vol. 297, pp. 1703–1706. https://doi.org/10.1126/science.1074276

    Article  CAS  PubMed  Google Scholar 

  11. Kerns, J.A., Emerman, M., and Malik, H.S., Positive selection and increased antiviral activity associated with the PARP-containing isoform of human zinc-finger antiviral protein, PLoS Genet., 2008, vol. 4, pp. 0150–0158. https://doi.org/10.1371/journal.pgen.0040021

  12. Vyas, S., Chesarone-Cataldo, M., Todorova, T., Huang, Y.-H., and Chang, P., A systematic analysis of the PARP protein family identifies new functions critical for cell physiology, Nat. Commun., 2013, vol. 4, p. 2240. https://doi.org/10.1038/ncomms3240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Welsby, I., Hutin, D., Gueydan, C., Kruys, V., Rongvaux, A., and Leo, O., PARP12, an interferon-stimulated gene involved in the control of protein translation and inflammation, J. Biol. Chem., 2014, vol. 289, pp 26642–26657. https://doi.org/10.1074/jbc.M114.589515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhu, Y. and Gao, G., ZAP-mediated mRNA degradation, RNA Biol., 2008, vol. 5, pp. 65–67. https://doi.org/10.4161/rna.5.2.6044

    Article  CAS  PubMed  Google Scholar 

  15. Gläsker, S., Töller, M., and Kümmerer, B.M., The alternate triad motif of the poly(ADP-ribose) polymerase-like domain of the human zinc finger antiviral protein is essential for its antiviral activity, J. Gen. Virol., 2014, vol. 95, pp. 816–822. https://doi.org/10.1099/vir.0.060988-0

    Article  CAS  PubMed  Google Scholar 

  16. Goodier, J.L., Pereira, G.C., Cheung, L.E., Rose, R.J., and Kazazian, H.H., The broad-spectrum antiviral protein ZAP restricts human retrotransposition, PLoS Genet., 2015, vol. 11, p. e1 005 252. https://doi.org/10.1371/journal.pgen.1005252

    Article  CAS  Google Scholar 

  17. Lin, Y., Zhang, H., Liang, J., Li, K., Zhu, W., Fu, L., Wang, F., Zheng, X., Shi, H., Wu, S., Xiao, X., Chen, L., Tang, L., Yan, M., Yang, X., Tan, Y., Qiu, P., Huang, Y., Yin, W., Su, X., Hu, H., Hu, J., and Yan, G., Identification and characterization of alphavirus M1 as a selective oncolytic virus targeting ZAP-defective human cancers, Proc. Natl. Acad. Sci. U. S. A., 2014, vol. 111, pp. E4504–E4512. https://doi.org/10.1073/pnas.1408759111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kaufman, H.L., Kohlhapp, F.J., and Zloza, A., Oncolytic viruses: a new class of immunotherapy drugs, Nat. Rev. Drug Discovery, 2015, vol. 14, pp. 642–662. https://doi.org/10.1038/nrd4663

    Article  CAS  PubMed  Google Scholar 

  19. Amé, J.C., Spenlehauer, C., and De Murcia, G., The PARP superfamily, BioEssays, 2004, vol. 26, pp. 882–893.

    Article  Google Scholar 

  20. Guo, X., Carroll, J.-W.N., Macdonald, M.R., Goff, S.P., and Gao, G., The zinc finger antiviral protein directly binds to specific viral mRNAs through the CCCH zinc finger motifs, J. Virol., 2004, vol. 78, pp. 12 781–12 787. https://doi.org/10.1128/JVI.78.23.12781-12787.2004

    Article  CAS  Google Scholar 

  21. Law, L.M.J., Albin, O.R., Carroll, J.W.N., Jones, C.T., Rice, C.M., and MacDonald, M.R., Identification of a dominant negative inhibitor of human zinc finger antiviral protein reveals a functional endogenous pool and critical homotypic interactions, J. Virol., 2010, vol. 84, pp. 4504–4512. https://doi.org/10.1128/JVI.02018-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen, S., Xu, Y., Zhang, K., Wang, X., Sun, J., Gao, G., and Liu, Y., Structure of N-terminal domain of ZAP indicates how a zinc-finger protein recognizes complex RNA, Nat. Struct. Mol. Biol., 2012, vol. 19, pp. 430–435. https://doi.org/10.1038/nsmb.2243

    Article  CAS  PubMed  Google Scholar 

  23. Li, M.M.H., Lau, Z., Cheung, P., Aguilar, E.G., Schneider, W.M., Bozzacco, L., Molina, H., Buehler, E., Takaoka, A., Rice, C.M., Felsenfeld, D.P., and MacDonald, M.R., TRIM25 enhances the antiviral action of zinc-finger antiviral protein (ZAP), PLoS Pathog., 2017, vol. 13, p. e1 006 145. https://doi.org/10.1371/journal.ppat.1006145

    Article  CAS  Google Scholar 

  24. Zheng, X., Wang, X., Tu, F., Wang, Q., Fan, Z., and Gao, G., TRIM25 is required for the antiviral activity of zinc-finger antiviral protein (ZAP), J. Virol., 2017, vol. 91, p. e00088-17. https://doi.org/10.1128/JVI.00088-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Froshauer, S., Kartenbeck, J., and Helenius, A., Alphavirus RNA replicase is located on the cytoplasmic surface of endosomes and lysosomes, J. Cell Biol., 1988, vol. 107, pp. 2075–2086. https://doi.org/10.1371/journal.pbio.0050220

    Article  CAS  PubMed  Google Scholar 

  26. Frolova, E.I., Gorchakov, R., Pereboeva, L., Atasheva, S., and Frolov, I., Functional Sindbis virus replicative complexes are formed at the plasma membrane, J. Virol., 2010, vol. 84, pp. 11 679–11 695. https://doi.org/10.1128/jvi.01441-10

    Article  Google Scholar 

  27. Guo, X., Ma, J., Sun, J., and Gao, G., The zinc-finger antiviral protein recruits the RNA processing exosome to degrade the target mRNA, Proc. Natl. Acad. Sci. U. S. A., 2007, vol. 104, pp. 151–156. https://doi.org/10.1073/pnas.0607063104

    Article  CAS  PubMed  Google Scholar 

  28. Chen, G., Guo, X., Lv, F., Xu, Y., and Gao, G., p72 DEAD box RNA helicase is required for optimal function of the zinc-finger antiviral protein, Proc. Natl. Acad. Sci. U. S. A., 2008, vol. 105, pp. 4352–4357. https://doi.org/10.1073/pnas.0712276105

    Article  PubMed  PubMed Central  Google Scholar 

  29. Cordin, O., Banroques, J., Tanner, N.K., and Linder, P., The DEAD-box protein family of RNA helicases, Gene, 2006, vol. 367, pp. 17–37.

    Article  CAS  Google Scholar 

  30. Linder, P. and Jankowsky, E., From unwinding to clamping: The DEAD box RNA helicase family, Nat. Rev. Mol. Cell Biol., 2011, vol. 12, pp. 505–516. https://doi.org/10.1038/nrm3154

    Article  CAS  PubMed  Google Scholar 

  31. Janknecht, R., Multi-talented dead-box proteins and potential tumor promoters: P68 RNA helicase (DDx5) and its paralog, p72 RNA helicase (DDx17), Am. J. Transl. Res., 2010, vol. 2, pp. 223–234.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Erazo, A. and Goff, S.P., Nuclear matrix protein Matrin 3 is a regulator of ZAP-mediated retroviral restriction, Retrovirology, 2015, vol. 12, p. 57. https://doi.org/10.1186/s12977-015-0182-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Huang, Z., Wang, X., and Gao, G., Analyses of SELEX-derived ZAP-binding RNA aptamers suggest that the binding specificity is determined by both structure and sequence of the RNA, Protein Cell, 2010, vol. 1, pp. 752–759. https://doi.org/10.1007/s13238-010-0096-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wandtke, T., Woźniak, J., and Kopiński, P., Aptamers in diagnostics and treatment of viral infections, Viruses, 2015, vol. 7, pp. 751–780.

    Article  CAS  Google Scholar 

  35. González, V.M., Martín, M.E., Fernández, G., and García-Sacristán, A., Use of aptamers as diagnostics tools and antiviral agents for human viruses, Pharmaceuticals, 2016, vol. 9, no. 4, p. 78.

    Article  Google Scholar 

  36. Takata, M.A., Gonçalves-Carneiro, D., Zang, T.M., Soll, S.J., York, A., Blanco-Melo, D., and Bieniasz, P.D., CG dinucleotide suppression enables antiviral defense targeting non-self RNA, Nature, 2017, vol. 550, p. 7674. https://doi.org/10.1038/nature24039

    Article  CAS  Google Scholar 

  37. Vacca, I., Viral infection: Adapt or get zapped, Nat. Rev. Microbiol., 2017, vol. 15, p. 641. https://doi.org/10.1038/nrmicro.2017.129

    Article  CAS  PubMed  Google Scholar 

  38. Zhu, Y., Chen, G., Lv, F., Wang, X., Ji, X., Xu, Y., Sun, J., Wu, L., Zheng, Y.-T., and Gao, G., Zinc-finger antiviral protein inhibits HIV-1 infection by selectively targeting multiply spliced viral mRNAs for degradation, Proc. Natl. Acad. Sci. U. S. A., 2011, vol. 108, pp. 15 834–15 839. https://doi.org/10.1073/pnas.1101676108

    Article  Google Scholar 

  39. Goff, S.P., Evolution: Zapping viral RNAs, Nature, 2017, vol. 550, pp. 46–47. https://doi.org/10.1038/nature24140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang, L.F., Yu, M., Hansson, E., Pritchard, L.I., Shiell, B., Michalski, W.P., and Eaton, B.T., The exceptionally large genome of Hendra virus: Support for creation of a new genus within the family Paramyxoviridae, J. Virol., 2000, vol. 74, pp. 9972–9979. https://doi.org/10.1128/JVI.74.21.9972-9979.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Salladini, E., Delauzun, V., and Longhi, S., The Henipavirus V protein is a prevalently unfolded protein with a zinc-finger domain involved in binding to DDB1, Mol. BioSyst., 2017, vol. 13, pp. 2254–2267. https://doi.org/10.1039/C7MB00488E

    Article  CAS  PubMed  Google Scholar 

  42. Li, T., Chen, X., Garbutt, K.C., Zhou, P., and Zheng, N., Structure of DDB1 in complex with a paramyxovirus V protein: Viral Hijack of a propeller cluster in ubiquitin ligase, Cell, 2006, vol. 124, pp. 105–117. https://doi.org/10.1016/j.cell.2005.10.033

    Article  CAS  PubMed  Google Scholar 

  43. Lin, G.Y., Paterson, R.G., Richardson, C.D., and Lamb, R.A., The V protein of the paramyxovirus SV5 interacts with damage-specific DNA binding protein, Virology, 1998, vol. 249, pp. 189–200. https://doi.org/10.1006/viro.1998.9317

    Article  CAS  PubMed  Google Scholar 

  44. Bick, M.J., Carroll, J.-W.N., Gao, G., Goff, S.P., Rice, C.M., and MacDonald, M.R., Expression of the zinc-finger antiviral protein inhibits alphavirus replication, J. Virol., 2003, vol. 77, pp. 11 555–11 562. https://doi.org/10.1128/JVI.77.21.11555

    Article  Google Scholar 

  45. Wang, X., Tu, F., Zhu, Y., and Gao, G., Zinc-finger antiviral protein inhibits XMRV infection, PLoS One, 2012, vol. 7, no. 6, p. e39 159. https://doi.org/10.1371/journal.pone.0039159

    Article  CAS  Google Scholar 

  46. Switzer, W.M., Jia, H., Zheng, H.Q., Tang, S., and Heneine, W., No association of xenotropic murine leukemia virus-related viruses with prostate cancer, PLoS One, 2011, vol. 6, no. 5, p. e19 065. https://doi.org/10.1371/journal.pone.0019065

    Article  CAS  Google Scholar 

  47. Hohn, O., Krause, H., Barbarotto, P., Niederstadt, L., Beimforde, N., Denner, J., Miller, K., Kurth, R., and Bannert, N., Lack of evidence for xenotropic murine leukemia virus-related virus (XMRV) in German prostate cancer patients, Retrovirology, 2009, vol. 6, p. 92. https://doi.org/10.1186/1742-4690-6-92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Furuta, R.A., Miyazawa, T., Sugiyama, T., Kuratsune, H., Ikeda, Y., Sato, E., Misawa, N., Nakatomi, Y., Sakuma, R., Yasui, K., Yamaguti, K., and Hirayama, F., No association of xenotropic murine leukemia virus-related virus with prostate cancer or chronic fatigue syndrome in Japan, Retrovirology, 2011, vol. 8, p. 20. https://doi.org/10.1186/1742-4690-8-20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Baraniuk, J.N., Xenotropic murine leukemia virus-related virus in chronic fatigue syndrome and prostate cancer, Curr. Allergy Asthma Rep., 2010, vol. 10, pp. 210–214.

    Article  Google Scholar 

  50. Chen, E.Q., Dai, J., Bai, L., and Tang, H., The efficacy of zinc finger antiviral protein against hepatitis B virus transcription and replication in transgenic mouse model, Virol. J., 2015, vol. 12, p. 25. https://doi.org/10.1186/s12985-015-0245-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhu, Y., Wang, X., Goff, S.P., and Gao, G., Translational repression precedes and is required for ZAP-mediated mRNA decay, EMBO J., 2012, vol. 31, pp. 4236–4246.

    Article  CAS  Google Scholar 

  52. Schmid, M. and Jensen, T.H., The exosome: A multipurpose RNA-decay machine, Trends Biochem. Sci., 2008, vol. 33, pp. 501–510.

    Article  CAS  Google Scholar 

  53. Lykke-Andersen, S., Brodersen, D.E., and Jensen, T.H., Origins and activities of the eukaryotic exosome, J. Cell Sci., 2009, vol. 122, pp. 1487–1494. https://doi.org/10.1242/jcs.047399

    Article  CAS  PubMed  Google Scholar 

  54. Chlebowski, A., Lubas, M., Jensen, T.H., and Dziembowski, A., RNA decay machines: The exosome, Biochim. Biophys. Acta, Gene Regul. Mech., 2013, vol. 1829, pp. 552–560.

    Article  CAS  Google Scholar 

  55. Garzia, A., Jafarnejad, S.M., Meyer, C., Chapat, C., Gogakos, T., Morozov, P., Amiri, M., Shapiro, M., Molina, H., Tuschl, T., and Sonenberg, N., The E3 ubiquitin ligase and RNA-binding protein ZNF598 orchestrates ribosome quality control of premature polyadenylated mRNAs, Nat. Commun., 2017, vol. 8, p. 16 056. https://doi.org/10.1038/ncomms16056

    Article  CAS  Google Scholar 

  56. Sundaramoorthy, E., Leonard, M., Mak, R., Liao, J., Fulzele, A., and Bennett, E.J., ZNF598 and RACK1 regulate mammalian ribosome-associated quality control function by mediating regulatory 40S ribosomal ubiquitylation, Mol. Cell, 2017, vol. 65, pp. 751–760. https://doi.org/10.1016/j.molcel.2016.12.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Juszkiewicz, S. and Hegde, R.S., Initiation of quality control during poly(A) translation requires site-specific ribosome ubiquitination, Mol. Cell, 2017, vol. 65, pp. 743–750. https://doi.org/10.1016/j.molcel.2016.11.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Cano, F., Rapiteanu, R., Sebastiaan Winkler, G., and Lehner, P.J., A non-proteolytic role for ubiquitin in deadenylation of MHC-I mRNA by the RNA-binding E3-ligase MEX-3C, Nat. Commun., 2015, vol. 6, p. 8670. https://doi.org/10.1038/ncomms9670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Oh, Y. and Chung, K.C., UHRF2, a ubiquitin E3 ligase, acts as a small ubiquitin-like modifier E3 ligase for zinc finger protein 131, J. Biol. Chem., 2013, vol. 288, pp. 9102–9111. https://doi.org/10.1074/jbc.M112.438234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Feng, Q., Jagannathan, S., and Bradley, R.K., The RNA surveillance factor UPF1 represses myogenesis via its E3 ubiquitin ligase activity, Mol. Cell, 2017, vol. 67, pp. 239–251. e6. https://doi.org/10.1016/j.molcel.2017.05.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Lal Badshah.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Syed Lal Badshah, Ullah, A. & Syed, S. The Role of Zinc-Finger Antiviral Proteins in Immunity against Viruses. Mol. Genet. Microbiol. Virol. 35, 78–84 (2020). https://doi.org/10.3103/S0891416820020020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0891416820020020

Keywords:

Navigation