Skip to main content
Log in

CRISPR/CAS Targeted in vivo Genome Modification for Studying the Functional Role of Genomic Regulatory Elements in Health and Carcinogenesis

  • Reviews
  • Published:
Molecular Genetics, Microbiology and Virology Aims and scope Submit manuscript

Abstract

One problem in the study of regulatory mechanisms in living systems is the difficulty in analysis of regulatory elements in their natural context. One promising way to solve this problem is direct in situ modification of regulatory element sequences. The new technology of gene modification based on the bacterial CRISPR/Cas system allows one to quickly and accurately modify any genomic fragment, in particular, in cells of an adult organism. This review considers principles of the CRISPR/Cas technology and its application to the study of regulatory elements, as well as the potential of using this technology in studies of regulatory systems in pancreas tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Birney, E., The making of ENCODE: Lessons for bigdata projects, Nature, 2012, vol. 489, no. 7414, pp. 49–51.

    Article  PubMed  CAS  Google Scholar 

  2. Chung, I.–M., Ketharnathan, S., Kim, S.–H., et al., Making sense of the tangle: Insights into chromatin folding and gene regulation, Genes, 2016, vol. 7, no. 10, p. 71.

    Article  PubMed Central  CAS  Google Scholar 

  3. Visscher, P.M., Brown, M.A., McCarthy, M.I., and Yang, J., Five years of GWAS discovery, Am. J. Hum. Genet., 2012, vol. 90, no. 1, pp. 7–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Seruggia, D., Fernandez, A., Cantero, M., et al., Functional validation of mouse tyrosinase non–coding regulatory DNA elements by CRISPR–Cas9–mediated mutagenesis, Nucleic Acids Res., 2015, vol. 43, no. 10, pp. 4855–4867.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Andrey, G., Montavon, T., Mascrez, B., et al., A switch between topological domains underlies HoxD genes collinearity in mouse limbs, Science, 2013, vol. 340, no. 6137, p. 1234167.

    Article  PubMed  CAS  Google Scholar 

  6. Reid, L.H., Shesely, E.G., Kim, H.S., and Smithies, O., Cotransformation and gene targeting in mouse embryonic stem cells, Mol. Cell. Biol., 1991, vol. 11, no. 5, pp. 2769–2777.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Sagai, T., Hosoya, M., Mizushina, Y., et al., Elimination of a long–range cis–regulatory module causes complete loss of limb–specific Shh expression and truncation of the mouse limb, Development, 2005, vol. 132, no. 4, pp. 797–803.

    Article  PubMed  CAS  Google Scholar 

  8. Ishii, A., Kurosawa, A., Saito, S., and Adachi, N., Analysis of the role of homology arms in gene–targeting vectors in human cells, PLoS One, 2014, vol. 9, no. 9, p. e108236.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Hsu, P.D., Lander, E.S., and Zhang, F., Development and applications of CRISPR–Cas9 for genome engineering, Cell, 2014, vol. 157, no. 6, pp. 1262–1278.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Barrangou, R., Fremaux, C., Deveau, H., et al., CRISPR provides acquired resistance against viruses in prokaryotes, Science, 2007, vol. 315, no. 5819, pp. 1709–1712.

    Article  PubMed  CAS  Google Scholar 

  11. Marraffini, L.A. and Sontheimer, E.J., CRISPR interference: RNA–directed adaptive immunity in bacteria and archaea, Nat. Rev. Genet., 2010, vol. 11, no. 3, pp. 181–190.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Jansen, R., Embden, J.D., Gaastra, W., and Schouls, L.M., Identification of genes that are associated with DNA repeats in prokaryotes, Mol. Microbiol., 2002, vol. 43, no. 6, pp. 1565–1575.

    Article  PubMed  CAS  Google Scholar 

  13. Lander, E.S., The Heroes of CRISPR, Cell, 2016, vol. 164, nos. 1–2, pp. 18–28.

    Article  PubMed  CAS  Google Scholar 

  14. Pennisi, E., The CRISPR craze, Science, 2013, vol. 341, no. 6148, pp. 833–836.

    PubMed  CAS  Google Scholar 

  15. Jinek, M., Chylinski, K., Fonfara, I., et al., A programmable dual–RNA–guided DNA endonuclease in adaptive bacterial immunity, Science, 2012, vol. 337, no. 6096, pp. 816–821.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Jiang, F., Taylor, D.W., Chen, J.S., et al., Structures of a CRISPR–Cas9 R–loop complex primed for DNA cleavage, Science, 2016, vol. 351, no. 6275, pp. 867–871.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Kleinstiver, B.P., Prew, M.S., Tsai, S.Q., et al., Engineered CRISPR–Cas9 nucleases with altered PAM specificities, Nature, 2015, vol. 523, no. 7561, pp. 481–485.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Ran, F.A., Cong, L., Yan, W.X., et al., In vivo genome editing using Staphylococcus aureus Cas9, Nature, 2015, vol. 520, no. 7546, pp. 186–191.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Mali, P., Yang, L., Esvelt, K.M., et al., RNA–guided human genome engineering via Cas9, Science, 2013, vol. 339, no. 6121, pp. 823–826.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Kim, H. and Kim, J.S., A guide to genome engineering with programmable nucleases, Nat. Rev. Genet., 2014, vol. 15, no. 5, pp. 321–334.

    Article  PubMed  CAS  Google Scholar 

  21. Sanchez–Rivera, F.J. and Jacks, T., Applications of the CRISPR–Cas9 system in cancer biology, Nat. Rev. Cancer, 2015, vol. 15, no. 7, pp. 387–395.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Xiao, A., Wang, Z., Hu, Y., et al., Chromosomal deletions and inversions mediated by TALENs and CRISPR/Cas in zebrafish, Nucleic Acids Res., 2013, vol. 41, no. 14, p. e141.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Choi, P.S. and Meyerson, M., Targeted genomic rearrangements using CRISPR/Cas technology, Nat. Commun., 2014, vol. 5, p. 3728.

    Article  PubMed  CAS  Google Scholar 

  24. Wakabayashi, A., Ulirsch, J.C., Ludwig, L.S., et al., Insight into GATA1 transcriptional activity through interrogation of cis elements disrupted in human erythroid disorders, Proc. Natl. Acad. Sci. U. S. A., 2016, vol. 113, no. 16, pp. 4434–4439.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Laursen, K.B., Kashyap, V., Scandura, J., and Gudas, L.J., An alternative retinoic acid–responsive Stra6 promoter regulated in response to retinol deficiency, J. Biol. Chem., 2015, vol. 290, no. 7, pp. 4356–4266.

    Article  PubMed  CAS  Google Scholar 

  26. Li, Y., Rivera, C.M., Ishii, H., et al., CRISPR reveals a distal super–enhancer required for Sox2 expression in mouse embryonic stem cells, PLoS One, 2014, vol. 9, no. 12, p. e114485.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Didych, D.A., Tyulkina, D.V., Pleshkan, V.V., Alekseenko, I.V., and Sverdlov, E.D., Are super–enhancers regulators of regulatory genes of development and cancer?, Mol. Biol. (Moscow), 2015, vol. 49, no. 6, pp. 818–824.

    Article  CAS  Google Scholar 

  28. Hsu, P.Y., Hsu, H.K., Hsiao, T.H., et al., Spatiotemporal control of estrogen–responsive transcription in ERalpha–positive breast cancer cells, Oncogene, 2016, vol. 35, no. 18, pp. 2379–2389.

    Article  PubMed  CAS  Google Scholar 

  29. Meyer, M.B., Benkusky, N.A., and Pike, J.W., Selective distal enhancer control of the Mmp13 gene identified through clustered regularly interspaced short palindromic repeat (CRISPR) genomic deletions, J. Biol. Chem., 2015, vol. 290, no. 17, pp. 11093–11107.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Groschel, S., Sanders, M.A., Hoogenboezem, R., et al., A single oncogenic enhancer rearrangement causes concomitant EVI1 and GATA2 deregulation in leukemia, Cell, 2014, vol. 157, no. 2, pp. 369–381.

    Article  PubMed  CAS  Google Scholar 

  31. Flavahan, W.A., Drier, Y., Liau, B.B., et al., Insulator dysfunction and oncogene activation in IDH mutant gliomas, Nature, 2016, vol. 529, no. 7584, pp. 110–114.

    Article  PubMed  CAS  Google Scholar 

  32. Sanborn, A.L., Rao, S.S., Huang, S.C., et al., Chromatin extrusion explains key features of loop and domain formation in wild–type and engineered genomes, Proc. Natl. Acad. Sci. U. S. A., 2015, vol. 112, no. 47, pp. E6456–E6465.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Guo, Y., Xu, Q., Canzio, D., et al., CRISPR inversion of CTCF sites alters genome topology and enhancer/promoter function, Cell, 2015, vol. 162, no. 4, pp. 900–910.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Canver, M.C., Smith, E.C., Sher, F., et al., BCL11A enhancer dissection by Cas9–mediated in situ saturating mutagenesis, Nature, 2015, vol. 527, no. 7577, pp. 192–197.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Diao, Y., Li, B., Meng, Z., et al., A new class of temporarily phenotypic enhancers identified by CRISPR/Cas9–mediated genetic screening, Genome Res., 2016, vol. 26, no. 3, pp. 397–405.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Korkmaz, G., Lopes, R., Ugalde, A.P., et al., Functional genetic screens for enhancer elements in the human genome using CRISPR–Cas9, Nat. Biotechnol., 2016, vol. 34, no. 2, pp. 192–198.

    Article  PubMed  CAS  Google Scholar 

  37. Zuckermann, M., Kawauchi, D., and Gronych, J., Applications of the CRISPR/Cas9 system in murine cancer modeling, Briefings Funct. Genomics, 2017, vol. 16, no. 1, pp. 25–33.

    Article  CAS  Google Scholar 

  38. Platt, R.J., Chen, S., Zhou, Y., et al., CRISPR–Cas9 knockin mice for genome editing and cancer modeling, Cell, 2014, vol. 159, no. 2, pp. 440–455.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Sanchez–Rivera, F.J., Papagiannakopoulos, T., Romero, R., et al., Rapid modelling of cooperating genetic events in cancer through somatic genome editing, Nature, 2014, vol. 516, no. 7531, pp. 428–431.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Snyder, E.L., Watanabe, H., Magendantz, M., et al., Nkx2–1 represses a latent gastric differentiation program in lung adenocarcinoma, Mol. Cell, 2013, vol. 50, no. 2, pp. 185–199.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Maddalo, D., Manchado, E., Concepcion, C.P., et al., In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system, Nature, 2014, vol. 516, no. 7531, pp. 423–427.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Blasco, R.B., Karaca, E., Ambrogio, C., et al., Simple and rapid in vivo generation of chromosomal rearrangements using CRISPR/Cas9 technology, Cell Rep., 2014, vol. 9, no. 4, pp. 1219–1227.

    Article  PubMed  CAS  Google Scholar 

  43. Xue, W., Chen, S., Yin, H., et al., CRISPR–mediated direct mutation of cancer genes in the mouse liver, Nature, 2014, vol. 514, no. 7522, pp. 380–384.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Chiou, S.H., Winters, I.P., Wang, J., et al., Pancreatic cancer modeling using retrograde viral vector delivery and in vivo CRIS PR/Cas9–mediated somatic genome editing, Genes Dev., 2015, vol. 29, no. 14, pp. 1576–1585.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Mazur, P.K., Herner, A., Mello, S.S., et al., Combined inhibition of BET family proteins and histone deacetylases as a potential epigenetics–based therapy for pancreatic ductal adenocarcinoma, Nat. Med., 2015, vol. 21, no. 10, pp. 1163–1171.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Zuckermann, M., Hovestadt, V., Knobbe–Thomsen, C.B., et al., Somatic CRISPR/Cas9–mediated tumour suppressor disruption enables versatile brain tumour modelling, Nat. Commun., 2015, vol. 6, p. 7391.

    Article  PubMed  CAS  Google Scholar 

  47. Malina, A., Mills, J.R., Cencic, R., et al., Repurposing CRISPR/Cas9 for in situ functional assays, Genes Dev., 2013, vol. 27, no. 23, pp. 2602–2614.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Khurana, E., Fu, Y., Chakravarty, D., et al., Role of non–coding sequence variants in cancer, Nat. Rev. Genet., 2016, vol. 17, no. 2, pp. 93–108.

    Article  PubMed  CAS  Google Scholar 

  49. Hanahan, D. and Weinberg, R.A., Hallmarks of cancer: The next generation, Cell, 2011, vol. 144, no. 5, pp. 646–674.

    Article  PubMed  CAS  Google Scholar 

  50. Morton, J.P., Jamieson, N.B., Karim, S.A., et al., LKB1 haploinsufficiency cooperates with Kras to promote pancreatic cancer through suppression of p21–dependent growth arrest, Gastroenterology, 2010, vol. 139, no. 2, pp. 586–597.e6.

    Article  PubMed  CAS  Google Scholar 

  51. Vorvis, C., Hatziapostolou, M., Mahurkar–Joshi, S., et al., Transcriptomic and CRISPR/Cas9 technologies reveal FOXA2 as a tumor suppressor gene in pancreatic cancer, Am. J. Physiol.: Gastrointest. Liver Physiol., 2016, vol. 310, no. 11, pp. G1124–G1137.

    Google Scholar 

  52. Diaferia, G.R., Balestrieri, C., Prosperini, E., et al., Dissection of transcriptional and cis–regulatory control of differentiation in human pancreatic cancer, EMBO J., 2016, vol. 35, no. 6, pp. 595–617.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Kuzmich.

Additional information

Original Russian Text © A.I. Kuzmich, M.V. Zinovyeva, V.K. Potapov, M.B. Kostina, E.D. Sverdlov, 2018, published in Molekulyarnaya Genetika, Mikrobiologiya i Virusologiya, 2018, No. 1, pp. 3–8.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuzmich, A.I., Zinovyeva, M.V., Potapov, V.K. et al. CRISPR/CAS Targeted in vivo Genome Modification for Studying the Functional Role of Genomic Regulatory Elements in Health and Carcinogenesis. Mol. Genet. Microbiol. Virol. 33, 1–7 (2018). https://doi.org/10.3103/S0891416818010081

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0891416818010081

Keywords

Navigation