Skip to main content
Log in

Pharmacogenomics of cisplatin-based chemotherapy in ovarian-cancer patients from Yakutia

  • Cancer Proteomics
  • Published:
Molecular Genetics, Microbiology and Virology Aims and scope Submit manuscript

Abstract

A DNA polymorphism is one of the most important factors determining individual variations in patients’ responses to the same medicinal preparations. This work deals with assessment of associations between polymorphisms of 106 genes involved in key processes of cellular activity (xenobiotic metabolism, DNA repair, the cell cycle, and the regulation of apoptosis) and the outcomes of a cisplatin-based chemotherapy in a cohort of ovarian-cancer patients from Yakutia. The CDKN1B gene polymorphism (rs34330) has been found to be associated with the frequency of complete remissions. The allelic status of this locus was also shown to be significant for progression-free survival. The allelic status at the EPXH1 gene loci (rs2234922 and rs2260863) correlated with impairments in hearing, while the NBN gene polymorphism (rs1063045) was associated with severe emesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kelland, L., The resurgence of platinum-based cancer chemotherapy, Nat. Rev. Cancer, 2007, vol. 7, no. 8, pp. 573–584.

    Article  CAS  PubMed  Google Scholar 

  2. Muggia, F., Platinum compounds 30 years after the introduction of cisplatin: implications for the treatment of ovarian cancer, Gynecol. Oncol., 2009, vol. 112, no. 1, pp. 275–281.

    Article  CAS  PubMed  Google Scholar 

  3. Prakticheskie rekomendatsii po lecheniyu zlokachestvennykh opukholey Obschestva onkologov-khimioterapevtov RUSSCO, 2012 (Practical Recommendations for the Treatment of Malignant Tumors of the Society of Oncologists and Chemotherapeutists RUSSCO, 2012). http://www.rosoncoweb.ru/standarts/RUSSCO/

  4. Rabik, C.A. and Dolan, M.E., Molecular mechanisms of resistance and toxicity associated with platinating agents, Cancer. Treat. Rev., 2007, vol. 33, no. 1, pp. 9–23.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Monzó, M., Navarro, A., Ferrer, G., and Artells, R., Pharmacogenomics: A tool for improving cancer chemotherapy, Clin. Transl. Oncol., 2008, vol. 10, no. 10, pp. 6218–637.

    Article  Google Scholar 

  6. O’Donnell, P.H. and Ratain, M.J., Germline pharmacogenomics in oncology: Decoding the patient for targeting therapy, Mol. Oncol., 2012, vol. 6, no. 2, pp. 251–259.

    Article  PubMed  Google Scholar 

  7. Jung, Y. and Lippard, S.J., Direct cellular responses to platinum-induced DNA damage, Chem. Rev, 2007, vol. 107, no. 5, pp. 1387–1407.

    Article  CAS  PubMed  Google Scholar 

  8. HuGE Navigator: An Integrated, Searchable Knowledge base of Genetic Associations and Human Genome Epidemiology. http://hugenavigator.net/HuGENavigator/home.do. Accessed February 27, 2013.

  9. Khrunin, A., Ivanova, F., Moisseev, A., Khokhrin, D., Sleptsova, Y., Gorbunova, V., et al., Pharmacogenomics of cisplatin-based chemotherapy in ovarian cancer patients of different ethnic origins, Pharmacogenomics, 2012, vol. 13, no. 2, pp. 171–178.

    Article  CAS  PubMed  Google Scholar 

  10. Milligan, B.G., Total DNA isolation, in Molecular Genetic Analysis of Populations, Hoelzel, A.R., Ed., London: Oxford Univ. Press, 1998, pp. 29–60.

    Google Scholar 

  11. Liu, K. and Muse, S.V., Powermarker: An integrated analysis environment for genetic marker analysis, Bioinformatics, 2005, vol. 21, no. 9, pp. 2128–2129.

    Article  CAS  PubMed  Google Scholar 

  12. Landa, I., Montero-Conde, C., Malanga, D., De Gisi, S., Pita, G., Leandro-Garcia, L.J., et al., Allelic variant at −79 (C > T) in CDKN1B (p27Kip1) confers and increased risk of thyroid cancer and alters mRNA levels, Endocr.-Relat. Cancer, 2010, vol. 17, no. 2, pp. 317–328.

    Article  CAS  PubMed  Google Scholar 

  13. Zhuang, Y., Yin, H.T., Yin, X.L., Wang, J., and Zhang, D.P., High p27 expression is associated with a better prognosis in East Asian non-small cell lung cancer patients, Clin. Chim. Acta, 2011, vol. 412, nos. 23–24, pp. 2228–2231.

    Article  CAS  PubMed  Google Scholar 

  14. Xu, J.L., Hu, L.M., Huang, M.D., Zhao, W., Yin, Y.M., Hu, Z.B., et al., Genetic variants of NBS1 predict clinical outcome of platinum-based chemotherapy in advanced non-small cell lung cancer in Chinese, Asian Pac. J. Cancer. Prev., 2012, vol. 13, no. 3, pp. 851–856.

    Article  PubMed  Google Scholar 

  15. Liu, Y., Webb, H.K., Fukushima, H., Micheli, J., Markova, S., Olson, J.L., et al., Attenuation of cisplatin-induced renal injury by inhibition of soluble epoxide hydrolase involves nuclear factor kB signaling, J. Pharmacol. Exp. Ther., 2012, vol. 341, no. 3, pp. 725–734.

    Article  CAS  PubMed  Google Scholar 

  16. Deavall, D.G., Martin, E.A., Horner, J.M., and Roberts, R., Drug-induced oxidative stress and toxicity, J. Toxicol., 2012, vol. 2012, pp. 645–660.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Khokhrin.

Additional information

Original Russian Text © D.V. Khokhrin, A.V. Khrunin, F.G. Ivanova, A.A. Moisseev, V.A. Gorbunova, S.A. Limborska, 2013, published in Molekulyarnaya Genetika, Mikrobiologiya i Virusologiya, 2013, No. 4, pp. 6–9.

About this article

Cite this article

Khokhrin, D.V., Khrunin, A.V., Ivanova, F.G. et al. Pharmacogenomics of cisplatin-based chemotherapy in ovarian-cancer patients from Yakutia. Mol. Genet. Microbiol. Virol. 28, 137–140 (2013). https://doi.org/10.3103/S0891416813040034

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0891416813040034

Keywords

Navigation