Skip to main content
Log in

Theoretical and Observed Signs of Excitation of Small-Scale Magnetic Fluctuations in the Depth of the Sun

  • SOLAR PHYSICS
  • Published:
Kinematics and Physics of Celestial Bodies Aims and scope Submit manuscript

Abstract

An actual problem today is the search for observed evidence of the existence of deep small-scale magnetic fields of the Sun. In this regard, the authors analyzed the theoretical criterion for separating the contributions to the solar surface magnetism of two qualitatively different mechanisms of a small-scale dynamo, the action of which is hidden in the depths of the solar convection zone (SCZ), proposed by Sokoloff and Khlystova [Astron. Nachr. 2010. 331. P. 82–87]. The first mechanism ensures the generation of small-scale magnetic fields due to the interaction of turbulent motions with the mean magnetic field (small-scale dynamo-1 of macroscopic MHD), while the second mechanism causes self-excitation of magnetic fluctuations due to turbulent pulsations of highly conductive plasma ( diffusive small-scale dynamo-2 of classical MHD). The essence of the proposed criterion is that deep small-scale magnetic fields can lead under certain conditions to violations of Hale’s and Joy’s laws of observed magnetism on the surface of the Sun. Statistical analysis of these disturbances allows one to identify the differences in the evolution of the observed manifestations of two sources of small-scale fields since the contribution of two deep dynamo mechanisms to surface magnetism varies with the phase of the solar cycle in different ways. Such an important feature is the behavior of the percentage of anti-Hail groups of sunspots (in relation to the total number of sunspots) during the cycles. In the case of small-scale dynamo-1, the percentage of anti-Hale groups is independent of cycle phase, whereas the percentage of anti-Hale groups associated with diffusive small-scale dynamo-2 should reach its maximum value at solar minima. Therefore, the variations of magnetic anomalies make it possible to separate the meager contributions of two small-scale dynamo mechanisms to surface magnetism. In this connection, the task of identifying the markers of a small-scale dynamo in the solar depths from observations becomes relevant. With this in mind, we conducted an analysis of literature data of statistical studies of long series of observed violations of Hale’s and Joy’s laws, which can be caused by the presence of deep small-scale magnetic fluctuations of various origins. In particular, it was demonstrated in the work of Sokoloff, Khlystova, and Abramenko [Mon. Notic. Roy. Astron. Soc. 2015. 451. P. 1522–1527] on the basis of processing the data of different catalogs for the period 1917–2004 that the percentage of anti-Hale groups of spots increases during the minima of solar cycles. This testifies to the operation of a diffusive small-scale turbulent dynamo-2 within the SCZ, the efficiency of which becomes noticeable near the minima of the cycles, when the global toroidal magnetic field weakens. As a result of the authors' analysis of six magnetic active regions observed near the minima of the 24th and 25th solar cycles, characteristic violations of Hale’s and Joy’s laws were revealed, which may indicate the influence of a diffusive small-scale dynamo-2 on the evolution of these regions since it is this source that gives the most noticeable contribution in surface magnetism near cycles minima.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. V. I. Abramenko, “Signature of the turbulent component of the solar dynamo on active region scales and its association with flaring activity,” Mon. Not. R. Astron. Soc. 507, 3698–3706 (2021).

    Article  ADS  Google Scholar 

  2. V. I. Abramenko, R. A. Suleymanova, and A. V. Zhukova, “Magnetic fluxes of solar active regions of different magneto-morphological classes: I. Cyclic variations,” Mon. Not. R. Astron. Soc. 518, 4746–4754 (2023).

    Article  ADS  Google Scholar 

  3. V. I. Abramenko, A. V. Zhukova, and A. S. Kutsenko, “Contributions from different-type active regions into the total solar unsigned magnetic flux,” Geomag. Aeron. (Engl. Transl.) 58, 1159–1169 (2018).

  4. H. Alfvén, “On the existence of electromagnetic-hydrodynamic waves,” Ark. Mat., Astron. Fys. B 29, 1–7 (1942);

    MATH  Google Scholar 

  5. Nature 150, 405–406 (1942).

  6. Y. Bekki and R. H. Cameron, “Three-dimensional non-kinematic simulation of the post-emergence evolution of bipolar magnetic regions and the Babcock–Leighton dynamo of the Sun?,” Astron. Astrophys. 670, 18 (2023).

    Article  Google Scholar 

  7. E. E. Benevolenskaya, “Double magnetic cycle of solar activity,” Sol. Phys. 161, 1–8 (1995).

    Article  ADS  Google Scholar 

  8. E. E. Benevolenskaya, “A model of the double magnetic cycle of the Sun,” Astrophys. J., Lett. 509, L49–L52 (1998).

    Article  ADS  Google Scholar 

  9. L. Biermann and A. Schlüter, “Cosmic radiation and cosmic magnetic fields. II. Origin of cosmic magnetic fields,” Phys. Rev. 82, 863–868 (1951).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. E. G. Blackman and G. B. Field, “New dynamical mean-field dynamo theory and closure approach,” Phys. Rev. Lett. 89, 265007 (2002).

    Article  ADS  Google Scholar 

  11. A. Brandenburg, D. Sokoloff, and K. Subramanian, “Current status of turbulent dynamo theory. From large-scale to small-scale dynamos,” Space Sci. Rev. 169, 123–159 (2012).

    Article  ADS  Google Scholar 

  12. A. Brandenburg and K. Subramanian, “Astrophysical magnetic fields and nonlinear dynamo theory,” Phys. Rep. 417, 1–209 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  13. P. Charbonneau, “Dynamo models of the solar cycle,” Living Rev. Sol. Phys. 7, 3 (2010).

    Article  ADS  Google Scholar 

  14. A. R. Choudhuri, “The evolution of loop structures in flux rings within solar convection zone,” Sol. Phys. 123, 217–239 (1989).

    Article  ADS  Google Scholar 

  15. Y. Fan, “Magnetic fields in the solar convection zone,” Living Rev. Sol. Phys. 6, 4 (2009).

    Article  ADS  Google Scholar 

  16. G. E. Hale, F. Ellerman, S. B. Nicholson, and A. H. Joy, “The magnetic polarity of sun-spots,” Astrophys. J. 49, 153–186 (1919).

    Article  ADS  Google Scholar 

  17. G. E. Hale and S. B. Nicholson, “The law of sun-spot polarity,” Astrophys. J. 62, 270 (1925).

    Article  ADS  Google Scholar 

  18. D. H. Hathaway, “The solar cycle,” Living Rev. Sol. Phys. 12, 4 (2015).

    Article  ADS  Google Scholar 

  19. R. F. Howard, “Axial tilt angles of sunspot groups,” Sol. Phys. 136, 251–262 (1991).

    Article  ADS  Google Scholar 

  20. A. P. Kazantsev, “Enhancement of a magnetic field by a conducting fluid,” Sov. Phys. - JETP 26, 1031 (1968).

    ADS  Google Scholar 

  21. R. H. Kraichnan and S. Nagarajan, “Growth of turbulent magnetic fields,” Phys. Fluids 10, 859–870 (1967).

    Article  ADS  MATH  Google Scholar 

  22. F. Krause and K.-H. Rädler, Mean Field Magnetohydrodynamics and Dynamo Theory (Pergamon, Oxford, 1980).

    MATH  Google Scholar 

  23. V. N. Krivodubskij, “Electrical conductivity of the matter in subphotosheric layers of the Sun,” Probl. Kosm. Fiz. 8, 1–15 (1973).

    Google Scholar 

  24. V. N. Krivodubskij, “Turbulent dynamo near tachocline and reconstruction of azimuthal magnetic field in the solar convection zone,” Astron. Nachr. 326, 61–74 (2005).

    Article  ADS  Google Scholar 

  25. V. N. Krivodubskij, “Role of rotational radial magnetic advection in possible explaining a cycle with two peaks,” Adv. Space Res. 68, 3943–3955 (2021).

    Article  ADS  Google Scholar 

  26. V. N. Kryvodubskyj, “Dynamo parameters of the solar convection zone,” Kinematics Phys. Celestial Bodies 22, 1–20 (2006).

    ADS  Google Scholar 

  27. J. Li, “A systematic study of Hale and anti-Hale sunspot physical parameters,” Astrophys. J. 867, 89 (2018).

    Article  ADS  Google Scholar 

  28. J. Li and R. K. Ulrich, “Long-term measurements of sunspot magnetic tilt angles,” Astrophys. J. 758, 115 (2012).

    Article  ADS  Google Scholar 

  29. B. H. McClintock, A. A. Norton, and J. Li, “Re-examining sunspot tilt angle to include anti-Hale statistics,” Astrophys. J. 797, 130 (2014).

    Article  ADS  Google Scholar 

  30. A. Munoz-Jaramillo, B. Navarrete, and L. E. Campusano, “Solar anti-Hale bipolar magnetic regions: A distinct population with systematic properties,” Astrophys. J. 920, 31 (2021).

    Article  ADS  Google Scholar 

  31. M. Nagy, A. Lemerle, F. Labonville, K. Petrovay, and P. Charbonneau, “The effect of "rogue” active regions on the solar cycle,” Sol. Phys. 292, 167 (2017).

    Article  ADS  Google Scholar 

  32. E. P. Popova, K. A. Potemina, and N. A. Yukhina, “Double cycle of solar activity in a two-layer medium,” Geomagn. Aeron. (Engl. Transl.) 54, 877–881 (2015).

  33. E. Popova, V. Zharkova, and S. Zharkov, “Probing latitudinal variations of the solar magnetic field in cycles 21–23 by Parker’s two-layer dynamo model with meridional circulation,” Ann. Geophys. 31, 2023–2028 (2013).

    Article  ADS  Google Scholar 

  34. K.-H. Rädler, N. Kleeorin, and I. Rogachevskii, “The mean electromotive force for MHD turbulence: the case of a weak mean magnetic field and slow rotation,” Geophys. Astrophys. Fluid Dyn. 97, 249–274 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  35. R. S. Richardson, “Sunspot groups of irregular magnetic polarity,” Astrophys. J. 107, 78 (1948).

    Article  ADS  Google Scholar 

  36. S. J. Shepherd, S. I. Zharkov, and V. V. Zharkova, “Prediction of solar activity from solar background magnetic field variations in cycles 21–23,” Astrophys. J. 795, 46–53 (2014).

    Article  ADS  Google Scholar 

  37. S. F. Smith and R. Howard, “Magnetic classification of active regions,” in Structure and Development of Solar Active Regions, Ed. by K. O. Kiepenheuer, (Springer-Verlag, Dordrecht, 1968), in Ser.: International Astronomical Union Symposia, Vol. 35, pp. 33–42.

  38. D. Sokoloff and A. I. Khlystova, “The solar dynamo in the light of the distribution of various sunspot magnetic classes over butterfly diagram,” Astron. Nachr. 331, 82–87 (2010).

    Article  ADS  MATH  Google Scholar 

  39. D. Sokoloff, A. Khlystova, and V. Abramenko, “Solar small-scale dynamo and polarity of sunspot groups,” Mon. Not. R. Astron. Soc. 451, 1522—1527 (2015).

    Article  ADS  Google Scholar 

  40. J. O. Stenflo and A. G. Kosovichev, “Bipolar magnetic regions on the Sun: global analysis of the SOHO/MDI data set,” Astrophys. J. 745, 129 (2012).

    Article  ADS  Google Scholar 

  41. S. Sur, A. Brandenburg, and K. Subramanian, “Kinematic α-effect in isotropic turbulence simulations,” Mon. Not. R. Astron. Soc. 385, L15–L19 (2008).

    Article  ADS  Google Scholar 

  42. Y. I. Vitinsky, “On sunspot groups with irregular magnetic polarities,” Byull. Soln. Dannye 9, 86 (1968).

    ADS  Google Scholar 

  43. Y.-M. Wang and J. N. R. Sheeley, “Average properties of bipolar magnetic regions during sunspot cycle-21,” Sol. Phys. 124, 81–100 (1989).

    Article  ADS  Google Scholar 

  44. Zh. Xu, X. Yan, L. Yang, et al., “Evolution of an emerging anti-Hale region and its associated eruptive solar flares in NOAA AR 12882,” Astrophys. J., Lett. 937, L11 (2022).

    Article  ADS  Google Scholar 

  45. V. V. Zharkova, S. J. Shepherd, and S. I. Zharkov, “Principal component analysis of background and sunspot magnetic field variations during solar cycles 21—23,” Mon. Not. R. Astron. Soc. 424, 2943–2953 (2012).

    Article  ADS  Google Scholar 

  46. A. Zhukova, A. Khlystova, V. Abramenko, and D. Sokoloff, “A catalog of bipolar active regions violating the Hale polarity law, 1989–2018,” Sol. Phys. 295, 165 (2020).

    Article  ADS  Google Scholar 

  47. A. Zhukova, A. Khlystova, V. Abramenko, and D. Sokoloff, “Synthetic solar cycle for active regions violating the Hale’s polarity law,” Mon. Not. R. Astron. Soc. 512, 1365–1370 (2022).

    Article  ADS  Google Scholar 

  48. Y. B. Zeldovich, A. A. Ruzmaikin, and D. D. Sokoloff, The Almighty Chance (World Scientific, Singapore, 1990), in Ser.: World Scientific Lecture Notes in Physics, Vol. 20.

Download references

Funding

This research was financed within the framework of the state budget topic no. 22BF23-03 under the program “Astronomy and Space Physics” of Taras Shevchenko National University of Kyiv.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. N. Krivodubskij or N. M. Kondrashova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krivodubskij, V.N., Kondrashova, N.M. Theoretical and Observed Signs of Excitation of Small-Scale Magnetic Fluctuations in the Depth of the Sun. Kinemat. Phys. Celest. Bodies 39, 342–355 (2023). https://doi.org/10.3103/S0884591323060053

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0884591323060053

Keywords:

Navigation