Skip to main content
Log in

Two-Frequency Propagation Mode of Acoustic−Gravity Waves in the Earth’s Atmosphere

  • DYNAMICS AND PHYSICS OF BODIES OF THE SOLAR SYSTEM
  • Published:
Kinematics and Physics of Celestial Bodies Aims and scope Submit manuscript

Abstract

As is known from multiyear theoretical and experimental studies, acoustic−gravity waves (AGW) determine the dynamics and energy balance of the atmospheres of planets and the Sun to a considerable extent. Linear wave perturbations in the atmosphere can be described with a system of second-order equations for the vertical and horizontal components of the perturbed velocity. It follows from this system that small perturbations in the atmosphere may be considered as oscillations of coupled oscillators with two degrees of freedom. This suggests that it is worth studying more thoroughly the linear acoustic−gravitational wave modes in the atmosphere with well-developed methods of the theory of oscillations. To study small perturbations in the Earth’s atmosphere, the methods of the theory of coupled oscillatory systems were used. It has been shown that acoustic−gravity waves in an isothermal atmosphere can be considered as a superposition of oscillations that occur simultaneously at two natural frequencies—acoustic and gravitational. The equations for the natural frequencies of oscillations, as well as for the components of the perturbed velocity under specified initial conditions, were derived. From the analysis of temporal changes in the components of the perturbed velocity, new features in their behavior were found. All solutions are presented with the use of real quantities only. This representation is more convenient for comparison with observational data than the complex one commonly used in the theory of acoustic−gravity waves. The conditions under which the usual single-frequency oscillation mode can be realized in the atmosphere are analyzed. The results of the study can be used to explain some features in space-borne observations of wave perturbations in the Earth’s atmosphere that do not fit the framework of the known theoretical concepts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. V. I. Arnold, Mathematical Methods of Classical Mechanics (Nauka, Moscow, 1979; Springer-Verlag, New York, 1980).

  2. G. Bateman, MHD Instabilities (MIT Press, Cambridge, MA, 1978; Energoizdat, Moscow, 1982).

  3. E. E. Gossard and W. H. Hooke, Waves in the Atmosphere: Atmospheric Infrasound and Gravity Waves: Their Generation and Propagation (Elsevier, Amsterdam, 1975; Mir, Moscow, 1978).

  4. N. V. Karlov and N. A. Kirichenko, Oscillations, Waves, Structures (Fizmatlit, Moscow, 2003) [in Russian].

    Google Scholar 

  5. E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations (McGraw-Hill, New York, 1955; Inostrannaya. Literatura., Moscow, 1958).

  6. E. I. Kryuchkov, A. K. Fedorenko, O. K. Cheremnykh, “Influence of the upper atmosphere inhomogeneity on acoustic-gravity wave propagation,” Kosm. Nauka Tekhnol. 18 (4), 30–36 (2012).

    Article  Google Scholar 

  7. E. I. Kryuchkov, O. K. Cheremnykh, and A. K. Fedorenko, “Properties of acoustic-gravity waves in the Earth’s polar thermosphere,” Kinematics Phys. Celestial Bodies 33, 122–129 (2017).

    Article  ADS  Google Scholar 

  8. Yu. P. Ladikov-Roev and O. K. Cheremnykh, Mathematical Models of Continuous Media (Naukova Dumka, Kyiv, 2010) [in Russian].

    Google Scholar 

  9. Yu. P. Ladikov-Roev, O. K. Cheremnykh, A. K. Fedorenko, and V. E. Nabivach, “Acoustic-gravity waves in a vortex polar thermosphere,” Probl. Upr. Inf., No. 5, 74–84 (2015).

  10. L. D. Landau and E. M. Lifshits, Course of Theoretical Physics, Vol. 1: Mechanics (Nauka, Moscow, 1965; Pergamon, Oxford, 1969).

  11. L. D. Landau and E. M. Lifshits, Course of Theoretical Physics, Vol. 6: Fluid Dynamics (Nauka, Moscow, 1986; Pergamon, Oxford, 1987).

  12. K. Magnus, Vibrations (Blackie, London, 1965; Mir, Moscow, 1982).

  13. R. Priest, Solar Magnetohydrodynamics (Reidel, Dordrecht, 1982; Mir, Moscow, 1985).

  14. M. I. Rabinovich and D. I. Trubetskov, Introduction to the Theory of Oscillations and Waves (Nauka, Moscow, 1984) [in Russian].

    Google Scholar 

  15. A. N. Tikhonov, A. B. Vasil’eva, and A. G. Sveshnikov, Differential Equations (Nauka, Moscow, 1985; Springer-Verlag, Berlin, 1985).

  16. P. Hartman, Ordinary Differential Equations (Wiley, New York, 1964; Mir, Moscow, 1970).

  17. O. K. Cheremnykh, Yu. A. Selivanov, and I. V. Zakharov, “The influence of compressibility and non-isothermality of the atmosphere on the propagation of acoustic-gravity waves,” Kosm. Nauka Tekhnol. 16 (1), 9–19 (2010).

    Article  Google Scholar 

  18. A. V. Bespalova, A. K. Fedorenko, O. K. Cheremnykh, and I. T. Zhuk, “Satellite observations of wave disturbances caused by moving solar terminator,” J. Atmos. Sol.-Terr. Phys. 140, 79–85 (2016). https://doi.org/10.1016/j.jastp.2016.02.012

    Article  ADS  Google Scholar 

  19. O. K. Cheremnykh, A. K. Fedorenko, E. I. Kryuchkov, and Y. A. Selivanov, “Evanescent acoustic-gravity modes in the isothermal atmosphere: Systematization and applications to the Earth and solar atmospheres,” Ann. Geophys. 37, 401–415 (2019).

    Article  ADS  Google Scholar 

  20. A. K. Fedorenko, E. I. Kryuchkov, O. K. Cheremnykh, Yu. O. Klymenko, and Yu. M. Yampolski, “Peculiarities of acoustic-gravity waves in inhomogeneous flows of the polar thermosphere,” J. Atmos. Sol.-Terr. Phys. 178, 17–23 (2018). https://doi.org/10.1016/j.jastp.2018.05.009

    Article  ADS  Google Scholar 

  21. A. K. Fedorenko, A. V. Bespalova, O. K. Cheremnykh, and E. I. Kryuchkov, “A dominant acoustic-gravity mode in the polar thermosphere,” Ann. Geophys. 33, 101–108 (2015).

    Article  ADS  Google Scholar 

  22. C. O. Hines, “Internal gravity waves at ionospheric heights,” Can. J. Phys. 38, 1441–1481 (1960).

    Article  ADS  Google Scholar 

  23. K. M. Huang, S. D. Zhang, F. Yi, C. M. Huang, Q. Gan, Y. Gong, and Y. H. Zhang, “Nonlinear interaction of gravity waves in a nonisothermal and dissipative atmosphere,” Ann. Geophys. 32, 263–275 (2014). https://doi.org/10.5194/angeo-32-263-2014

    Article  ADS  Google Scholar 

  24. D. Jovanovic, L. Stenflo, and P. K. Shukla, “Acoustic-gravity nonlinear structures,” Nonlinear Process. Geophys. 9, 333–339 (2002).

    Article  ADS  Google Scholar 

  25. T. D. Kaladze, O. A. Pokhotelov, H. A. Shan, M. I. Shan, and L. Stenflo, “Acoustic-gravity waves in the Earth ionosphere,” J. Atmos. Sol.-Terr. Phys. 70, 1607–1616 (2008).

    Article  ADS  Google Scholar 

  26. A. K. Nekrasov, S. L. Shalimov, P. K. Shukla, and L. Stenflo, “Nonlinear disturbances in the ionosphere due to acoustic gravity waves,” J. Atmos. Terr. Phys. 57, 732–742 (1995).

    ADS  Google Scholar 

  27. Yu. G. Rapoport, O. K. Cheremnykh, Yu. A. Selivanov, A. K. Fedorenko, V. M. Ivchenko, V. V. Grimalsky, and E. N. Tkachenko, “Modeling AGW and PEMW in inhomogeneous atmosphere and ionosphere,” in Proc. 14th Int. Conf. on Mathematical Methods in Electromagnetic Theory (MMET), Kharkiv, Ukraine, Aug. 28–30,2012 (IEEE, Piscataway, NJ, 2012), pp. 577–580, paper no. 6331225.

  28. P. H. Roberts, An Introduction to Magnetohydrodynamics (Longmans, London, 1967).

    Google Scholar 

  29. A. Roy, S. Roy, and A. P. Misra, “Dynamical properties of acoustic-gravity waves in the atmosphere,” J. Atmos. Sol.-Terr. Phys. 186, 78–81 (2019).

    Article  ADS  Google Scholar 

  30. L. Stenflo, “Nonlinear equations for acoustic gravity waves,” Phys. Lett. A. 222, 378–380 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  31. L. Stenflo and P. K. Shukla, “Nonlinear acoustic-gravity waves,” J. Plasma Phys. 75, 841–847 (2009). https://doi.org/10.1017/S0022377809007892

    Article  ADS  Google Scholar 

  32. I. Tolstoy, “The theory of waves in stratified fluids including the effect of gravity and rotation,” Rev. Mod. Phys. 35, 207–230 (1963).

    Article  ADS  MathSciNet  Google Scholar 

  33. B. A. Trubnikov, “Dynamical principle of stability for magnetohydrostatic systems,” Phys. Fluids 5, 184–191 (1962).

    Article  ADS  Google Scholar 

  34. S. L. Vadas and D. C. Fritts, “Thermospheric responses to gravity waves: Influences of increasing viscosity and thermal diffusivity,” J. Geophys. Res.: Atmos. 110, D15103 (2005). https://doi.org/10.1029/2004JD005574

    Article  ADS  Google Scholar 

  35. W. A. Whitaker, “Heating of the solar corona by gravity waves,” Astrophys. J. 137, 914–930 (1963).

    Article  ADS  Google Scholar 

  36. G. Worrall, “Oscillations in an isothermal atmosphere: The solar five-minute oscillations,” Astrophys. J. 172, 749–753 (1972).

    Article  ADS  Google Scholar 

  37. K. C. Yeh and C. H. Liu, “Acoustic-gravity waves in the upper atmosphere,” Rev. Geophys. Space Phys. 12, 193–216 (1974).

    Article  ADS  Google Scholar 

Download references

Funding

The study was supported in part by the Special-Purpose Integrated Program of the National Academy of Sciences of Ukraine on Scientific Space Researches for 2018−2022.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to O. K. Cheremnykh, E. I. Kryuchkov or A. K. Fedorenko.

Additional information

Translated by E. Petrova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheremnykh, O.K., Kryuchkov, E.I., Fedorenko, A.K. et al. Two-Frequency Propagation Mode of Acoustic−Gravity Waves in the Earth’s Atmosphere. Kinemat. Phys. Celest. Bodies 36, 64–78 (2020). https://doi.org/10.3103/S0884591320020026

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0884591320020026

Keywords:

Navigation