Skip to main content
Log in

On the efficiency of polarization measurements while studying aerosols in the terrestrial atmosphere

  • Dynamics and Physics of Bodies of the Solar System
  • Published:
Kinematics and Physics of Celestial Bodies Aims and scope Submit manuscript

Abstract

It has been shown that the orbital polarization measurements of the Earth in the spectral range λ > 300 nm do not allow the sets of the Stokes parameters satisfying the homogeneity requirement for the optical properties of the “atmosphere + surface” system to be retrieved. Due to this, the atmospheric and surface contributions cannot be correctly separated and the physical properties of the atmospheric aerosol cannot be determined. This is caused by the optical heterogeneity of the system, the different nature of aerosol above different relief features, and the poorly predictable temporal changes of the optical properties of the “atmosphere + surface” system. Observations at λ < 300 nm are more acceptable, since not only the surface but also the tropospheric layer of the atmosphere, which are both mostly subjected to the effects of horizontal inhomogeneity and temporal variations, become practically invisible due to a high absorption by the ozone layer. Because of this, from the scans along specified latitude zones, one may obtain the quasi-homogeneous dependences of the second Stokes parameter Q(α) (U(α) = 0) suitable for estimating the physical characteristics of the stratospheric aerosol and revealing their horizontal and temporal variations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. I. Bugaenko, Zh. M. Dlugach, A. V. Morozhenko, and E. G. Yanovitskii, “On the optical properties of the cloud layer of Saturn in the visible spectral range,” Astron. Vestn. 9(1), 13–21 (1975).

    ADS  Google Scholar 

  2. O. I. Bugaenko and A. V. Morozhenko, “Oriented particles in the upper layers of the atmosphere of Saturn,” in Physics of Planetary Atmospheres (Naukova Dumka, Kiev, 1981), pp. 108–112 [in Russian].

    Google Scholar 

  3. L. M. Levin, Study on Physics of Turbulent Aerosols (USSR Academy of Sciences Publisher, Moscow, 1961) [in Russian].

    Google Scholar 

  4. I. N. Minin, “An optical model of the Martian atmosphere,” Astron. Zh. 44(6), 1284–1295 (1967).

    ADS  Google Scholar 

  5. A. V. Morozhenko, “Estimation of the atmospheric pressure near the Martian surface from polarimetric observations,” Astron. Tsirkulyar, No. 337, 1–4 (1965).

    Google Scholar 

  6. A. V. Morozhenko, “The Martian atmosphere from polarization observations,” Astron. Zh. 46(5), 1087–1094 (1969).

    ADS  Google Scholar 

  7. A. V. Morozhenko, “Optical parameters of the atmosphere and surface of Mars. 1. The aerosol component of the dust-free atmosphere,” Astron. Vestn. 8(3), 121–127 (1974).

    ADS  Google Scholar 

  8. A. V. Morozhenko, “A base on the Moon: The Earth global changes,” Kin. Fiz. Nebes. Tel 17(6), 549–559 (2001).

    ADS  Google Scholar 

  9. A. V. Morozhenko, “Polarimetry of the twilight sky and stratospheric aerosol,” Kin. Phys. Cel. Bodies 26(1), 36–38 (2010).

    Article  Google Scholar 

  10. A. V. Morozhenko, A. V. Shavrina, and A. A. Veles’, “A role of the stratospheric aerosol in the formation of the ozone layer,” Kin. Fiz. Nebes. Tel 16(4), 364–368 (2000).

    ADS  Google Scholar 

  11. O. V. Morozhenko, Methods and Results of Remote Sensing of the Planetary Atmospheres (Naukova Dumka, Kiev, 2004) [in Ukrainian].

    Google Scholar 

  12. O. V. Morozhenko and A. P. Vid’machenko, “An observing base on the Moon and the global ecological problem of the Earth,” presented at The Forth Ukrainian Conference on Space Researches (Kiev, 2004), p. 29.

    Google Scholar 

  13. O. V. Morozhenko, A. V. Shavrina, and O. O. Veles’, “A concept of the monitoring of the gaseous and aerosol pollution (above 30 km) of the terrestrial atmosphere from the International Space Station,” Kosm. Nauka Tekhnol. 6(2/3), 68–79 (2000).

    Google Scholar 

  14. S. P. Nevodovs’kii, A. P. Vid’machenko, O. V. Morozhenko, et al., “The Ukrainian youth satellite: Observations of the aerosols in the terrestrial atmosphere with the UV-polarimeter,” Kosm. Nauka Tekhnol. 10(5/6), 27–32 (2004).

    Google Scholar 

  15. P. V. Nevodovskii, A. V. Morozhenko, E. P. Nevodovskii, and M. D. Geraimchuk, “Study of characteristics of stratospheric aerosol by the ultraviolet polarimetry method,” Opt. Spectrosc. 107(2), 217–220 (2009).

    Article  ADS  Google Scholar 

  16. G. V. Rozenberg, Twilight (Fizmatgiz, Moscow, 1963) [in Russian].

    Google Scholar 

  17. V. V. Sobolev, “Study of the atmosphere of Venus. II,” Astron. Zh. 45(1), 169–176 (1968).

    ADS  MathSciNet  Google Scholar 

  18. V. P. Tishkovets, “Multiple scattering of electromagnetic waves by discrete random media,” Doctoral Dissertation in Mathematics and Physics (Khar’kov, 2009).

    Google Scholar 

  19. N. A. Fuks, Mechanics of Aerosols (USSR Academy of Sciences Publisher, Moscow, 1955) [in Russian].

    Google Scholar 

  20. O. S. Ugol’nikov and I. A. Maslov, “Study of the atmospheric aerosols in a wide altitude range from the polarization measurements of the twilight sky,” presented at Polarization Optics: The International Conference Devoted to the 50th Anniversary of the MSI Electronic Technique Faculty (Moscow, 2008), pp. 97–98.

    Google Scholar 

  21. Ya. S. Yatskiv, M. I. Mishchenko, V. K. Rozenbush, et al., “Project “Aerosol-UA”: Remote sensing of aerosols in the terrestrial atmosphere from a satellite,” Kosm. Nauka Tekhnol. 18(4), 3–15 (2012).

    Google Scholar 

  22. J. M. Ajello, K. D. Pang, A. L. Lane, et al., “Mariner 9 ultraviolet spectrometer experiment: bright-limb observations of the lower atmosphere of Mars,” J. Atmos. Sci. 33(3), 544–552 (1976).

    Article  ADS  Google Scholar 

  23. D. L. Coffeen, “A polarimetric study of the atmosphere of Venus,” Thesis for PhD Degree (Tucson, Univ. Arizona, 1968).

    Google Scholar 

  24. B. Conrath, “Thermal structure of the Martian atmosphere during the dissipation of the dust storm 1971,” Icarus 24(1), 36–46 (1975).

    Article  ADS  Google Scholar 

  25. A. Dollfus and E. Bowell, “Polarimetric properties of the lunar surface and its interpretation. Part 1. Telescopic observations,” Astron. Astrophys. 10(1), 29–53 (1971).

    ADS  Google Scholar 

  26. J. S. Farman, B. C. Gardiner, and J. D. Ahanrlin, “Large losses of ozone in Antarctica reveal seasonal ClOx/NOx interaction,” Nature 315(1), 207–210 (1985).

    Article  ADS  Google Scholar 

  27. F. F. Forbes and P. A. Welch, “The infrared polarization of the Moon,” Communs Lunar and Planet. Lab. 73(24), 105–110 (1968).

    ADS  Google Scholar 

  28. J. Hansen, “Climate forcings and feedbacks,” in Proceedings of the Workshop on Long-Term Monitoring of Global Climate Forcings and Feedbacks, Ed. by J. Hansen, W. Rossow, and I. Fung (NASA GISS, New York, 1992), pp. 6–12.

    Google Scholar 

  29. J. E. Hansen and A. Arking, “Clouds of Venus: Evidence for their nature,” Science 171(3972), 669–672 (1971).

    Article  ADS  Google Scholar 

  30. J. E. Hansen and J. W. Hovenier, “Interpretation of the polarization or Venus,” J. Atmos. Sci. 31(4), 1137–1160 (1974).

    Article  ADS  Google Scholar 

  31. D. R. Hanson, A. R. Ravinshankara, and S. Solomon, “Heterogeneous reactions in sulfuric oxide aerosols: A framework for model calculations,” J. Geophys. Res. 99(7), 3617–3628 (1994).

    ADS  Google Scholar 

  32. A. P. Ingersol, “Polarization measurements of Mars and Mercury: Rayleigh scattering in the Martian atmosphere,” Astrophys. J. 163(1), 121–130 (1971).

    Article  ADS  Google Scholar 

  33. G. M. Kattawar and L. D. C. Young, “Scattering in the atmosphere of Venus. II. Effects of varying the scale height of the scattering particles,” Icarus 30(1), 179–185 (1977).

    Article  ADS  Google Scholar 

  34. G. M. Keateang, “The response of ozone to solar activity variations: A review,” Solar Phys. 74(2), 321–347 (1981).

    Article  ADS  Google Scholar 

  35. W. A. Lane, Ch. W. Hord, R. A. West, et al., “Photopolarimetry from Voyager 2. Preliminary results on Saturn, Titan, and rings,” Science 215(4532), 537–543 (1982).

    Article  ADS  Google Scholar 

  36. C. B. Leovy, C. A. Briggs, A. T. Young, et al., “The Martian atmosphere: Mariner 9 television experiment progress report,” Icarus 17(2), 373–393 (1972).

    Article  ADS  Google Scholar 

  37. C. B. Leovy, B. A. Smith, A. T. Young, and R. B. Leighton, “Mars atmosphere during the Mariner 9 extended mission: Television results,” J. Geophys. Res. 78(2), 4253–4266 (1973).

    ADS  Google Scholar 

  38. G. Videen, Q. Fu, and P. Chyleck, “Light Scattering by Nonspherical Particles: Halifax Contributions,” (Army Research Laboratory, Adelphi, Maryland, 2000).

    Google Scholar 

  39. R. S. Lindzen, “Tides and gravity waves in the upper atmosphere,” in Mesospheric Models Sand Related Experiments, Ed. by D. Fiocco (Hingham Massachusets, Reidel, 1971), pp. 122–130.

    Chapter  Google Scholar 

  40. Proceedings of the Workshop on Long-Term Monitoring of Global Climate Forcings and Feedbacks, Ed. by J. Hansen, W. Rossow, and I. Fung (NASA GISS, New York, 1992).

    Google Scholar 

  41. B. Lyot, “Recherches sur la polarization de la lumiere des planetes et de quelgues substance terresters,” Ann. Observ. Meudon 29(1), 1–161 (1929).

    Google Scholar 

  42. A. V. Morozhenko and E. G. Yanovitskij, “The optical properties of Venus and the Jovian planets. I. The atmosphere of Jupiter according to polarimetric observations,” Icarus 18(3), 583–592 (1973).

    Article  ADS  Google Scholar 

  43. B. T. O’Leary, “Venus: Vertical structure of stratospheric hazes from Mariner 10 pictures,” Atmos. Sci. 32, 1091–1100 (1975).

    Article  ADS  Google Scholar 

  44. K. Rages, R. Beebe, and D. Senske, “Jovian stratospheric hazes: The high phase view from Galileo,” Icarus 139(2), 211–226 (1999).

    Article  ADS  Google Scholar 

  45. G. C. Reinzel, G. C. Tiao, J. J. DeLuisi, et al., “Analysis of upper stratospheric umkehr ozone profile data for trends and the effect of stratospheric aerosols,” J. Geophys. Res. 89, 4833–4840 (1984).

    Article  ADS  Google Scholar 

  46. M. Sato, J. E. Hansen, M. P. McCormick, and J. B. Pollack, “Stratospheric aerosol optical depth, 1850–1990,” J. Geophys. Res. 98(22), 22987–22994 (1993).

    Article  ADS  Google Scholar 

  47. G. C. Tiao, G. C. Reinzel, J. H. Pedrick, et al., “A statistical trend analysis of ozonesonde data,” J. Geophys. Res. 91, 13121–13136 (1986).

    Article  ADS  Google Scholar 

  48. L. Travis, “Earth observing scanning polarimeter,” in Proceedings of the Workshop on Long-Term Monitoring of Global Climate Forcings and Feedbacks, Ed. by J. Hansen, W. Rossow, and I. Fung (NASA GISS, New York, 1992), pp. 40–46.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.V. Morozhenko, A.P. Vidmachenko, P.V. Nevodovskiy, N.M. Kostogryz, 2014, published in Kinematika i Fizika Nebesnykh Tel, 2014, Vol. 30, No. 1, pp. 17–32.

About this article

Cite this article

Morozhenko, A.V., Vidmachenko, A.P., Nevodovskiy, P.V. et al. On the efficiency of polarization measurements while studying aerosols in the terrestrial atmosphere. Kinemat. Phys. Celest. Bodies 30, 11–21 (2014). https://doi.org/10.3103/S0884591314010061

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0884591314010061

Keywords

Navigation