Skip to main content
Log in

New Heuristics Based on Wavelet Analysis of a Single Sensor Record for Earthquake and Explosion Detection

  • Published:
Seismic Instruments Aims and scope Submit manuscript

Abstract

Recognition of a seismic event by the type of its phenomenon (earthquake or explosion, and if an explosion, then a subsurface or open pit explosion) at a regional scale on its seismogram is a problem that many researchers worldwide attempt to solve. A detailed review of Russian and global publications on this topic has been produced. This review made it possible to formulate the most promising directions on which research is underway. Thus, this study, which offers another approach to creating a discriminatory feature, may be useful for improving the results of recognition of a seismic event. The proposed method is based on continuous wavelet analysis of the seismogram from a single receiver. Two additional transformations (constructing the frequency envelopes to waveletogram and their cross-correlation at a given time) sequentially translate this result into a compact frequency-time portrait of the event. This technique was tested on seismograms of several events, the nature of which is a priori known. Recognition is possible both visually (including machine vision methods) and automatically. For the first option, the key features of frequency-time portraits of events to which attention should be paid are formulated. For the second case, a method for determining the numerical characteristics measured by the obtained images is defined. It is shown that these characteristics are naturally divided into clusters that correspond to the nature of the events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Abu-Elsoud, M.A., Abou-Chadi, F.E.Z., Amin, A.M., and Mahana, M., Classification of seismic events in Suez Gulf area, Egypt using artificial neural network, Int. Conf. on Electrical, Electronic and Computer Engineering, Cairo, 2004, IEEE, 2004, pp. 337–340.  https://doi.org/10.1109/ICEEC.2004.1374460

  2. Adushkin, V.V., Kitov, I.O., and Sanina, I.A., Application of a three-component seismic array to improve the detection efficiency of seismic events by the matched filter method, Dokl. Earth Sci., 2016, vol. 466, pp. 47–50.  https://doi.org/10.1134/S1028334X16010013

    Article  Google Scholar 

  3. Asming, V.E. and Baranov, S.V., Use of spectral and frequency-temporal variations in seismic signals for discriminating earthquakes and explosions in the Euro-Arctic region, Sovremennye metody obrabotki i interpretatsii seismologicheskikh dannykh. Materialy Mezhdunarodnoi seismologicheskoi shkoly, posvyashchennoi 100-letiyu otkrytiya seismicheskikh stantsii Pulkovo i Ekaterinburg (Modern Methods of Processing and Interpretation of Seismological Data: Proc. Int. Seismological School Devoted to 100th Anniversary of Opening of the Pulkovo and Yekaterinburg seismic stations), Obninsk, Kaluga oblast: Edinaya Geofiz. Sluzhba Ross. Akad. Nauk, 2006, pp. 23–27.

  4. Asming, V.E. and Fedorov, A.V., Possibility of using a single three-component station automatic detector–locator for detailed seismological observations, Seism. Instrum., 2015, vol. 51, pp. 201–208.  https://doi.org/10.3103/S0747923915030032

    Article  Google Scholar 

  5. Asming, V.E., Kremenetskaya, E.O., Vinogradov, Yu.A., and Evtyugina, Z.A., Criteria of explosions and earthquakes identification for estimation of seismic danger of the region, Vestn. MGTU. Tr. Murmanskogo Gos. Tekh. Univ., 2010, vol. 13, no. 4-2, pp. 998–1007.

  6. Asming, V.E., Kremenetskaya, E.O., Vinogradov, Yu.A., and Fedorov, A.V., On the application of naïve Bayesian classifiers in seismology, Seism. Prib., 2015, vol. 51, no. 4, pp. 29–40.

    Google Scholar 

  7. Bergen, K.J. and Beroza, G.C., Detecting earthquakes over a seismic network using single-station similarity measures, Geophys. J. Int., 2018, vol. 213, no. 3, pp. 1984–1998.  https://doi.org/10.1093/gji/ggy100

    Article  Google Scholar 

  8. Bergen, K.J. and Beroza, G.C., Earthquake fingerprints: extracting waveform features for similarity-based earthquake detection, Pure Appl. Geophys., 2019, vol. 176, pp. 1037–1059.  https://doi.org/10.1007/s00024-018-1995-6

    Article  Google Scholar 

  9. Bregman, Y., Lindenbaum, O., and Rabin, N., Array based earthquakes-explosion discrimination using diffusion maps, Pure Appl. Geophys., 2021, vol. 178, pp. 2403–2418.  https://doi.org/10.1007/s00024-020-02452-w

    Article  Google Scholar 

  10. Canário, J.P., Mello, R., Curilem, M., Huenupan, F., and Rios, R., In-depth comparison of deep artificial neural network architectures on seismic events classification, J. Volcanol. Geotherm. Res., 2020, vol. 401, p. 106881.  https://doi.org/10.1016/j.jvolgeores.2020.106881

    Article  Google Scholar 

  11. Dobrynina, A.A. and German, V.I., Discrimination of weak earthquakes and explosions, 2019.  https://doi.org/10.5281/zenodo.2590766

  12. Dyagilev, R.A., Use of statistical approaches at recognition of types of seismic events in Ural, Strategiya i protsessy osvoeniya georesursov. Materialy ezhegodnoi nauchnoi sessii Gornogo instituta UrO RAN po rezul’tatam NIR v 2007 g (Strategy and Processes of Use of Georesources: Proc. Annular Sci. Session of the Mining Institute of the Ural Branch of the Russian Academy of Sciences by the Results of R&D in 2007), Perm: Gornyi Inst. Ural. Otd. Ross. Akad. Nauk, 2008, pp. 153–155.

  13. Frantsuzova, V.I., Nikolaev, A.V., and Morozov, A.N., Identification of industrial blasts by regional seismometry data in the Arkhangelsk area, Geoekol. Inzh. Geol., Gidrogeol., Geokriol., 2010, no. 5, pp. 453–445.

  14. Gannibal, A.E., The application of the neural network for the determination of the false triggering of the automatic detector of weak seismic events, Tr. Kol’skogo Nauchn. Tsentra Ross. Akad. Nauk, 2017, vol. 8, no. 7-3, pp. 147–150.

  15. Godzikovskaya, A.A., Problem of recognition of quarrying explosions and local earthquakes, Vopr. Inzh. Seismol., 1987, no. 28, pp. 232–236.

  16. Golubeva, I.V., Starikovich, E.N., and Sharif’yanova, E.V., On the recognition of industrial explosions and regional earthquakes on example of Western Ural seismological network of stations, Sovremennye metody obrabotki i interpretatsii seismologicheskikh dannykh. Vtoraya Mezhdunarodnaya seismologicheskaya shkola (Modern Methods of Processing and Interpretation of Seismological Data: Second Int. Seismological School), Perm, 2007, Obninsk, Kaluga oblast: Edinaya Geofiz. Sluzhba Ross. Akad. Nauk, 2007, pp. 89–92.

  17. Kahbasi, A. and Moradi, A., Earthquake-explosion discrimination using waveform cross-correlation technique for mines in southeast of Tehran, J. Seismol., 2016, vol. 20, pp. 569–578.  https://doi.org/10.1007/s10950-015-9544-6

    Article  Google Scholar 

  18. Kislov, K.V. and Gravirov, V.V., Use of artificial neural networks for classification of noisy seismic signals, Seism. Instrum., 2017, vo. 53, pp. 87–101.  https://doi.org/10.3103/S0747923917010054

    Article  Google Scholar 

  19. Kuyuk, H.S., Yildirim, E., Dogan, E., and Horasan, G., An unsupervised learning algorithm: application to the discrimination of seismic events and quarry blasts in the vicinity of Istanbul, Nat. Hazards Earth Syst. Sci., 2011, vol. 11, no. 1, pp. 93–100.  https://doi.org/10.5194/nhess-11-93-2011

    Article  Google Scholar 

  20. Mallat, S., A Wavelet Tour of Signal Processing: The Sparse Way, Cambridge: Academic Press, 2008.

    Google Scholar 

  21. Minko, A.A., Algorithms for identifying objects based on wavelet-like Gauss transforms, Cand. Sci. (Eng.) Dissertation, Ryazan: Utkin Ryazan State Radio Engineering Univ., 2009.

  22. Mikhailova, N.N., Velikanov, A.E., Sokolova, I.N., Aristova, I.L., Sultanova, G.S., and Mukambaev, A.S., Identification of industrial blasts when estimating seismic hazard of regions of Kazakhstan with low seismicity, Vestn. Nats. Yadernogo Tsentra Resp. Kaz., 2012, no. 1, pp. 68–73.

  23. Morozov, A.N., Method for identifying explosive seismicity on the territory of Arkhangelsk oblast, Vestn. Kamchatskoi Regional’noi Org. Uchebn.-Nauchn. Tsentr, Ser.: Nauki Zemle, 2008, no. 1, pp. 177–184.

  24. Morozov, A.N. and Frantsuzova, V.I., Example of complex use of different techniques for recognizing industrial explosions on records of a station of the Arkhangelsk network, Vos’maya Ural’skaya molodezhnaya nauchnaya shkola po geofizike (8th Ural Young Scientific School on Geophysics), Malovichko, D.A., Ed., Perm, 2007, Perm: Gornyi Inst. Ural. Otd. Ross. Akad. Nauk, 2007, pp. 164–169.

  25. Nadezhka, L.I. and Ippolitov, O.M., Experience of classification of events on the basis of spatial-temporal analysis on the territory of Voronezh Crystal Massif, Sovremennye metody obrabotki i interpretatsii seismologicheskikh dannykh: Vtoraya Mezhdunarodnaya seismologicheskaya shkola (Modern Methods for Processing and Interpreting Seismological Data: Second Int. Seismological School), Perm, 2007, Obninsk, Kaluga oblast: Edinaya Geofiz. Sluzhba Ross. Akad. Nauk, 2007, pp. 156–159.

  26. Panas, N.M. and Bakhareva, D.I., About discrimination of weak earthquakes and industrial explosions in the southeastern Baltic Shield, Izv. Glavnoi Astronomicheskoi Observatorii Pulkove, vol. 219, no. 3, pp. 53–62.

  27. Persson, L. and Boutet, J.T., Discrimination of local seismic events in panama by means of higher order statistics, Proc. IEEE Signal Processing Workshop on Higher-Order Statistics, Banff, Canada, 1997, IEEE, 1997, pp. 14–19.  https://doi.org/10.1109/HOST.1997.613478

  28. Plafcan, D., Sandvol, E., Seber, D., Barazangi, M., Ibenbrahim, A., and Cherkaoui, T.-E., Regional discrimination of chemical explosions and earthquakes: A case study in Morocco, Bull. Seismol. Soc. Am., 1997, vol. 87, no. 5, pp. 1126–1139.  https://doi.org/10.1785/BSSA0870051126

    Article  Google Scholar 

  29. Rabin, N., Bregman, Y., Lindenbaum, O., Ben-Horin, Y., and Averbuch, A., Earthquake-explosion discrimination using diffusion maps, Geophys. J. Int., 2016, vol. 207, no. 3, pp. 1484–1492.  https://doi.org/10.1093/gji/ggw348

    Article  Google Scholar 

  30. Sanina, I.A., Nesterkina, M.A., Konstantinovskaya, N.L., Riznichenko, O.Yu., and Danilova, T.V., Application of wavelet analysis improves the accuracy of the catalogues of quarry blasts according to data from small aperture array Mikhnevo, Sovremennye Metody obrabotki i interpretatsii seismologicheskikh dannykh: Materialy XI Mezhdunarodnoi seismologicheskoi shkoly (Modern Methods for Processing and Interpreting Seismological Data: Proc. of the 11th Int. Seismological School), Cholpon-Ata, Kyrgyzstan, 2016, Obninsk, Kaluga oblast: Edinaya Geofiz. Sluzhba Ross. Akad. Nauk, 2016, pp. 12–16.

  31. Safronich, I.N. and Pivovarov, S.P., Some features of records of local seismic events, Sovremennaya geodinamika, glubinnoe stroenie i seismichnost’ platformennykh territorii i sopredel’nykh territorii: Materialy Mezhdunarodnoi konferentsii (Recent Geodynamics, Deep Structure, and Seismicity of Platform Territories and Neighboring Regions: Proc. of the Int. Conf.), Voronezh: Izd-vo Voronezh. Gos. Univ., 2001, pp. 172–175.

  32. Scarpetta, S., Giudicepietro, F., Ezin, E.C., Petrosino, S., Del Pezzo, E., Martini, M., and Marinaro, M., Automatic classification of seismic signals at Mt. Vesuvius Volcano, Italy, using neural networks, Bull. Seismol. Soc. Am., 2005, vol. 95, no. 1, pp. 185–196.  https://doi.org/10.1785/0120030075

    Article  Google Scholar 

  33. Silkin, K.Yu., Using the wavelet analysis as auxiliary criterion at identifying the nature of a seismic event, Struktura, veshchestvennyi sostav, svoistva, sovremennaya geodinamika i seismichnost’ platformennykh territorii i sopredel’nykh regionov: materialy XXII Vserossiiskoi s mezhdunarodnym uchastiem nauchno-prakticheskoi Shchukinskoi konferentsii (Structure, Material Composition, Properties, and Recent Geodynamics and Seismicity of Platform Territories and Neighboring Regions: Proc. of the 22th All-Russian Sci.-Pract. Shchukin Conf. with Int. Participation), Nadezhka, L.I. and Silkina, T.B., Eds., Voronezh, 2020, Voronezh: Voronezh. Gos. Univ., 2020, pp. 328–334.

  34. Silkin, K.Yu., Estimation of the delay-fired explosion’s duration based on the wavelet analysis results of its seismogram, Ross. Seismol. Zh., 2022, vol. 4, no. 1, pp. 53–62. https://doi.org/10.35540/2686-7907.2022.1.04

    Article  Google Scholar 

  35. Smirnov, A.A., Mukambayev, A.S., and Mikhailova, N.N., Methodology of identification of seismic events based on a number of infrasound and seismic data, Vestn. Nats. Yadernogo Tsentra Resp. Kaz., 2020, no. 2, pp. 105–111.

  36. Stollnitz, E., DeRose, T., and Salesin, D., Wavelets for computer graphics: A primer. 1, IEEE Comput. Graphics App-l., 1995, vol. 15, no. 3, pp. 76–84.  https://doi.org/10.1109/38.376616

    Article  Google Scholar 

  37. Tibi R., Linville L., Young C., and Brogan R., Classification of local seismic events in the Utah region: A comparison of amplitude ratio methods with a spectrogram-based machine learning approach, Bull. Seismol. Soc. Am., 2019, vol. 109, no. 6, pp. 2532–2544.  https://doi.org/10.1785/0120190150

    Article  Google Scholar 

  38. Vinogradov, Yu.A., Asming, V.E., Kremenetskaya, E.O., and Zhirov, D.V., Modern seismicity in mining areas in the Murmansk Region, J. Min. Sci., 2016, vol. 52, pp. 46–52.  https://doi.org/10.1134/S1062739116010113

    Article  Google Scholar 

  39. Voitova, A.S. and Kalinina, E.V., Identification of explosions and earthquakes on example of events from the consolidated catalog of the Northern Caucasus, XVII Ural’skaya molodezhnaya nauchnaya shkola po geofizike. Sbornik nauchnykh materialov (17th Ural Young Scientific School on Geophysics: Collection of Scientific Materials), Yekaterinburg: Inst. Geofiziki im. Bulashevicha, Ural. Otd. Ross. Akad. Nauk, 2016, pp. 47–50.

  40. Walter, W.R., Pasyanos, M.E., Matzel, E., Gok, R., Sweeney, J., Ford, S.R., and Rodgers, A.J., Regional seismic amplitude modeling and tomography for earthquake-explosion discrimination, Proc. 30th Monitoring Research and Review: Ground-Based Nuclear Explosion Monitoring Technologies, Portsmouth, 2008, vol. 1, pp. 702–711.

    Google Scholar 

  41. Wiszniowski, J., Plesiewicz, B., and Lizurek, G., Machine learning applied to anthropogenic seismic events detection in Lai Chau reservoir area, Vietnam, Comput. Geosci., 2021, vol. 146, p. 104628.  https://doi.org/10.1016/j.cageo.2020.104628

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author expresses his gratitude to the leading researcher of the Kola Branch, Federal Research Center Geophysical Survey, Russian Academy of Sciences” (KoF FRC GS RAS), V.E. Asming for kind help in data selection. Without valuable discussions with him on the methods used and the results obtained, this article would not have been possible.

Funding

The study was supported by the Ministry of Education and Science of the Russian Federation (within state task no. 075-01471-22) and using data obtained at the unique scientific installation “Seismic Infrasonic Complex for Monitoring the Arctic Permafrost Zone and the Complex for Continuous Seismic Monitoring of the Russian Federation, Adjacent Territories, and the World.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Yu. Silkin.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silkin, K.Y. New Heuristics Based on Wavelet Analysis of a Single Sensor Record for Earthquake and Explosion Detection. Seism. Instr. 58, 552–566 (2022). https://doi.org/10.3103/S0747923922050103

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0747923922050103

Keywords:

Navigation