Skip to main content
Log in

Sensor for the Concentration of Small Atmospheric Ions for Field Geophysical Observations

  • Published:
Seismic Instruments Aims and scope Submit manuscript

Abstract

The paper presents the results of the analytical and hardware development of a bipolar sensor for the concentration of small atmospheric ions, designed for long-term geophysical field observations. Theoretical estimates of the response function of the sensor are obtained. The dependence of the concentration of small atmospheric ions on the magnitude of the measured current of the aspiration capacitor and ion mobility spectrum is given. Numerical computations of the trajectories of small ions in an aspiration condenser of specified dimensions and geometry are performed. The probability of recording ions depending on their mobility is found. The circuit solutions and algorithms for the functioning of the hardware of the devices are described. Based on the development materials, prototypes of sensors are made. The technical characteristics and recommendations for the use of devices are given. Unlike analogues, the device is resistant to environmental influences. The sensors are tested in laboratory conditions and during the field observations of the electricity of the atmospheric boundary layer. In addition to being used as a part of a ground-based complex for geophysical observations, the developed sensor was used in an instrumental platform for balloon observations aloft. As a result of testing the devices, it was found that the functioning of the sensors is stable and the data are representative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Anisimov, S.V., Afinogenov, K.V., and Gur’ev, A.V., Hardware platform for balloon aeroelectrical observations, Nauchn. Priborostr., 2017, vol. 27, no. 1, pp. 24–28.  https://doi.org/10.18358/np-27-1-i2428

    Article  Google Scholar 

  2. Anisimov, S.V., Galichenko, S.V., Afinogenov, K.V., Makrushin, A.P., and Shikhova, N.M., Radon volumetric activity and ion production in the undisturbed lower atmosphere: Ground-based observations and numerical modeling, Izv., Phys. Solid Earth, 2017, vol. 53, no. 1, pp. 147–161.https://doi.org/10.1134/S1069351317010037

    Article  Google Scholar 

  3. Anisimov, S.V., Galichenko, S.V., Aphinogenov, K.V., Klimanova, E.V., Prokhorchuk, A.A., Kozmina, A.S., and Guriev, A.V., Mid-latitude atmospheric boundary layer electricity: a study by using a tethered balloon platform, Atmos. Res., 2021, vol. 250, p. 105355.  https://doi.org/10.1016/j.atmosres.2020.105355

    Article  Google Scholar 

  4. Bhardwaj, A., Sam, L., and Martin-Torres, F.J., The challenges and possibilities of earthquake predictions using non-seismic precursors, Eur. Phys. J. Spec. Top., 2021, vol. 230, pp. 367–380.  https://doi.org/10.1140/epjst/e2020-000257-3

    Article  Google Scholar 

  5. Ciarlet, P.G., The Finite Element Method for Elliptic Problems, Classics in Applied Mathematics, Philadelphia: S-IAM, 2002.

  6. Ciceron, R.D., Ebel, J.E., and Britton, J., A systematic compilation of earthquake precursors, Tectonophysics, 2009, vol. 476, pp. 371–396.  https://doi.org/10.1016/j.tecto.2009.06.008

    Article  Google Scholar 

  7. Ghosh, D., Deb, A., and Sengupta, R., Anomalous radon emission as precursor of earthquake, J. Appl. Geophys., 2009, vol. 69, no. 2, pp. 67–81. https://doi.org/10.1016/j.jappgeo.2009.06.001

    Article  Google Scholar 

  8. Hõrrak, U., Iher, H., Luts, A., Salm, J., and Tammet, H., Mobility spectrum of air ions at Tahkuse observatory, J. Geophys. Res., 1994, vol. 99, no. D5, pp. 10697–10700.  https://doi.org/10.1029/93JD02291

    Article  Google Scholar 

  9. Hõrrak, U., Salm, J., and Tammet, H., Statistical characterization of air ion mobility spectra at Tahkuse observatory: classification of air ions, J. Geophys. Res., 2000, vol. 105, no. D7, pp. 9291–9302.  https://doi.org/10.1029/1999JD901197

    Article  Google Scholar 

  10. Jonassen, N. and Wilkening, M.H., Conductivity and concentration of small ions in the lower atmosphere, J. Geophys. Res., 1965, vol. 70, pp. 779–784.  https://doi.org/10.1029/JZ070i004p00779

    Article  Google Scholar 

  11. Kamsali, N., Pawar, S.D., Murugavel, P., and Gopalakrishnan, V., Estimation of small ion concentration near the Earth’s surface, J. Atmos. Sol.-Terr. Phys., 2011, vol. 73, no. 16, pp. 2345–2351.  https://doi.org/10.1016/j.jastp.2011.07.011

    Article  Google Scholar 

  12. Keilis-Borok, V., Ismail-Zadeh, A., Kossobokov, V., and Shebalin, P., Non-linear dynamics of the lithosphere and intermediate-term earthquake prediction, Tectonophysics, 2001, vol. 338, nos. 3–4, pp. 247–260.  https://doi.org/10.1016/S0040-1951(01)00080-4

    Article  Google Scholar 

  13. Liu, S.C., McAfee, J.R., and Cicerone, R.J., Radon-222 and tropospheric vertical transport, J. Geophys. Res., 1984, vol. 89, no. D5, pp. 7291–7297.  https://doi.org/10.1029/JD089iD05p07291

    Article  Google Scholar 

  14. Martinelli, G., Contribution to a history of earthquake prediction research, Seismol. Res. Lett., 2000, vol. 71, no. 5, pp. 583–588.  https://doi.org/10.1785/gssrl.71.5.583

    Article  Google Scholar 

  15. Neri, M., Ferrera, E., Giammanco, S., Currenti, G., Cirrincione, R., Patane, G., and Zanon, V., Soil radon measurements as a tracer of tectonic and volcanic activity, Sci. Rep., 2016, vol. 6, p. 24581.  https://doi.org/10.1038/srep24581

    Article  Google Scholar 

  16. Nevinsky, I., Tsvetkova, T., Dogru, M., Aksoy, E., Inceos, M., Baykara, O., Kulahci, F., Melikadze, G., Akkurt, I., Kulali, F., Vogiannis, E., Pitikakis, E., Katsanou, K., and Lambrakis, N., Results of the simultaneous measurements of radon around the black sea for seismological applications, J. Environ. Radioact., 2018, vol. 192, pp. 48–66.  https://doi.org/10.1016/j.jenvrad.2018.05.019

    Article  Google Scholar 

  17. Nikolopoulus, D., Petraki, E., Yannakolopoulus, P., Cantzos, D., Panagiotaras, D., and Nomicos, C., Fractal analysis of pre-seismic electromagnetic and radon precursors: a systematic approach, J. Earth Sci. Clim. Change, 2016, vol. 7, no. 11, p. 1000376.  https://doi.org/10.4172/2157-7617.1000376

    Article  Google Scholar 

  18. Oh, Y.H. and Kim, G., A radon-thoron isotope pair as a reliable earthquake precursor, Sci. Rep., 2015, vol. 5, p. 13084.https://doi.org/10.1038/srep13084

    Article  Google Scholar 

  19. Petrov, A.I., Petrova, G.G., and Panchishkina, I.N., Profiles of polar conductivities and radon-222 concentration in the atmosphere by stable and labile stratification of surface layer, Atmos. Res., 2009, vol. 91, nos. 2–4, pp. 206–214.  https://doi.org/10.1016/j.atmosres.2008.06.015

    Article  Google Scholar 

  20. Pruthvi Rani, K.S., Paramesh, L., and Chandrashekara, M.S., Diurnal variations of 218Po, 214Pb, and 214Po and their effect on atmospheric electrical conductivity in the lower atmosphere at Mysore city, Karnataka State, India, J. Environ. Radioact., 2014, vol. 138, pp. 438–443.  https://doi.org/10.1016/j.jenvrad.2014.03.020

    Article  Google Scholar 

  21. Ragini, N., Shashikumar, T.S., Chandrashekara, M.S., Sannappa, J., and Paramesh, L., Temporal and vertical variations of atmosphere electrical conductivity related to radon and its progeny concentrations at Mysore, Indian J. Radio Space Phys., 2008, vol. 37, pp. 264–271. https://doi.org/10.13140/2.1.1925.1847

    Article  Google Scholar 

  22. Riggio, A. and Santulin, M., Earthquake forecasting: A review of radon as seismic precursor, Bull. Geophys. Oceanogr., 2015, vol. 56, no. 2, pp. 95–114. https://doi.org/10.4430/bgta0148

    Article  Google Scholar 

  23. Smirnov, V.V., Ionizatsiya v troposfere (Ionization in Troposphere), St. Petersburg: Gidrometeoizdat, 1992.

  24. Vinuesa, J.F., Basu, S., and Galmarini, S., The diurnal evolution of 222Rn and its progeny in the atmospheric boundary layer during the Wangara experiment, Atmos. Chem. Phys., 2007, vol. 7, no. 18, pp. 5003–5019.  https://doi.org/10.5194/acp-7-5003-2007

    Article  Google Scholar 

  25. Wilkening, M.H., Kawano, M., and Lane, C., Radon-daughter ions and their relation to some electrical properties of the atmosphere, Tellus, 1966, vol. 18, nos. 2–3, pp. 679–684.  https://doi.org/10.1111/j.2153-3490.1966.tb00285.x

    Article  Google Scholar 

  26. Woith, H., Radon earthquake precursor: a short review, Eur. Phys. J. Spec. Top., 2015, vol. 224, no. 4, pp. 611–627.  https://doi.org/10.1140/epjst/e2015-02395-9

    Article  Google Scholar 

  27. Zhang, K., Feichter, J., Kazil, J., Wan, H., Zhuo, W., Griffiths, A.D., Sartorius, H., Zahorowski, W., Ramonet, M., Schmidt, M., Yver, C., Neubert, R.E.M., and Brunke, E.-G., Radon activity in the lower troposphere and its impacts on ionization rate: A global estimate using different radon emissions, Atmos. Chem. Phys. Discuss., 2011, vol. 11, pp. 3251–3300. https://doi.org/10.5194/acpd-11-3251-2011

    Article  Google Scholar 

Download references

Funding

The study was supported by the state task of the Borok Geophysical Observatory, Schmidt Institute of Physics of the Earth, Russian Academy of Sciences (topic no. FMWU-2022-0025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Galichenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Oborin

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anisimov, S.V., Aphinogenov, K.V., Galichenko, S.V. et al. Sensor for the Concentration of Small Atmospheric Ions for Field Geophysical Observations. Seism. Instr. 58, 540–551 (2022). https://doi.org/10.3103/S0747923922050024

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0747923922050024

Keywords:

Navigation