Skip to main content
Log in

Absolute Gravimetric and Satellite Geodetic Measurements of Recent Motions at Gas and Oil Deposits in Transpolar Western Siberia

  • Published:
Seismic Instruments Aims and scope Submit manuscript

Abstract

We discuss the results of gravimetric and satellite geodetic measurements at the Zapolyarnoye and Yamburgskoye gas and oil deposits in Transpolar Western Siberia in subarctic zone of Yamal-Nenets autonomous okrug. The development of mineral deposits and large number of pipelines require monitoring of recent motions of the Earth’s surface. Displacements and other phenomenon were studied by satellite geodesy and absolute gravimetry. It is now possible to obtain the kinematic parameters (rates of subsidence and horizontal motion) and addition information on fluid motion into the layers of the deposits. The ground displacements rate in different short periods recorded at large man-made objects are shown. Rates for hydroobjects are estimated at 5 mm/yr. The gravimetry and satellite geodesy results obtained at the Zapolyarnoye deposit in the northern part of Western Siberia were analyzed. Subsidence rates of 21–23 mm/yr were estimated. An increase in gravity of up to 7 µGal were recorded at the deposits (2006–2008). In this case, the increased gravity is related to surface subsidence (with a normal vertical gradient). Subsidence rates of 16–21 mm/yr were estimated at the Yamburgskoye field. This result is consistent with the rates at Zapolyarnoye. The horizontal rates and orientation differed at different deposits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

REFERENCES

  1. Adushkin, V.V., Tectonic earthquakes of anthropogenic origin, Izv., Phys. Solid Earth, 2016, vol. 52, pp. 173–194. https://doi.org/10.1134/S1069351316020014

    Article  Google Scholar 

  2. Altamimi, Z., Rebischung, P., Métivier, L., and Collilieux, X., ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions, J. Geophys. Res., 2016, vol. 121, pp. 6109–6131. https://doi.org/10.1002/2016JB013098

    Article  Google Scholar 

  3. Ardyukov, D.G., Kalish, E.N., Nosov, D.A., Sizikov, I.S., Smirnov, M.G., Stus’, Yu.F., Timofeev, V.Yu., Kulinich, R.G., and Valitov, M.G., Results of absolute measurements of the acceleration of gravity at Cape Shultz, Giroskopiya Navig., 2015, no. 3, pp. 13–18.

  4. Arnautov, G.P., Results of international metrological comparison of absolute laser ballistic gravimeters, Avtometria, 2005, vol. 41, no. 1, pp. 126–136.

    Google Scholar 

  5. Baranov, V.N. and Kuteni, Dzh., Determination of the subsidence surface profile in the oil production area when designing geodetic observations, Vestn. Sib. Gos. Univ. Geosist. Tekhnol., 2018, vol. 23, no. 2, pp. 5–17.

    Google Scholar 

  6. Bolt, B.A., Earthquakes, New York: W.H. Freeman, 1988, 2nd ed.

    Google Scholar 

  7. Ferguson, J.F., Klopping, F.J., Chen, T., Seibert, J.E., Hare, J.L., and Brady, J.L., 4D absolute gravity method for fluid control at Prudhoe Bay, Geophysics, 2008, vol. 73, no. 6, pp. WA163–WA171. https://doi.org/10.1190/1.2992510

    Article  Google Scholar 

  8. Grushinskii, N.P., Osnovy gravimetrii (Fundamentals of Gravimetry), Moscow: Nauka, 1983.

  9. Herring, T.A., King, R.W., and McClusky, S.C., GAMIT: GPS Analysis at MIT. Release 10.4 MIT, 2010a. http://www-gpsg.mit.edu/~simon/gtgk/GAMIT_Ref.pdf.

  10. Herring, T.A., King, R.W., and McClusky, S.C., GLOBK: Global Kalman filter VLBI and GPS analysis program. Version 10.4. MIT, 2010b. http://www-gpsg.mit.edu/~simon/gtgk/GLOBK_Ref.pdf.

  11. IGS Network/International GNSS Service. http:// ww.igs.org/network.

  12. Jiao Liu and Rogozhin, E.A., Coseismic deformation of the Earth’s surface in the area of the catastrophic 2008 Wenchuan earthquake according to GPS measurements, Izv., Atmos. Oceanic Phys., 2018, vol. 54, pp. 1470–1476. https://doi.org/10.1134/S0001433818100080

    Article  Google Scholar 

  13. Kukol, Z., Skorost’ geologicheskikh protsessov (Rates of Geological Processes), Moscow: Mir, 1987.

  14. Kuz’min, Yu.O., Sovremennaya geodinamika i otsenka geodinamicheskogo riska pri nedropol’zovanii (Modern Geodynamics and Assessment of Geodynamic Risk in Subsoil Use), Moscow: Agentstvo Ekon. Nov., 1999.

  15. Kuzmin, Yu.O., Recent geodynamics of the faults and paradoxes of the rates of deformation, Izv., Phys. Solid Earth, 2013, vol. 49, pp. 626–642. https://doi.org/10.1134/S1069351313050029

    Article  Google Scholar 

  16. Kuz’min, Yu.O., Topical issues of using geodetic measurements in geodynamic monitoring of oil and gas facilities, Vestn. Sib. Gos. Univ. Geosist. Tekhnol., 2020, vol. 25, no. 1, pp. 43–54.

    Google Scholar 

  17. Lukhnev, A.V., San’kov, V.A., Miroshnichenko, A.I., Ashurkov, S.V., and Calais, E., GPS rotation and strain rates in the Baikal-Mongolia region, Russ. Geol. Geophys., 2010, vol. 51, no. 7, pp. 1006–1017. https://doi.org/10.1016/j.rgg.2010.06.006

    Article  Google Scholar 

  18. Mironov, A.P., Suchilin, A.A., and Rogozhin, E.A., Observations of modern crustal deformations in Moscow using global navigation satellite systems, Izv., Atmos. Oceanic Phys., 2019, vol. 55, pp. 1517–1525. https://doi.org/10.1134/S0001433819100074

    Article  Google Scholar 

  19. Nikonov, A.A., Modern technogenic movements of the Earth’s crust, Izv. Akad. Nauk SSSR, Ser. Geol., 1976, no. 12, pp. 135–150.

  20. Robertson, L., Francis, O., van Dam, T.M., Faller, J., Ruess, D., Delinte, J.M., Vitushkin, L., Liard, J., Gagnon, C., Guang, G.Y., Da Lun, H., Yuan, F.Y., Yi X.J., Jeffries, G., Hopevell, H., et al., Results from the fifth international comparison of absolute gravimeters, ICAG'97, Metrologia, 2001, vol. 38, no. 1, pp. 71–78. https://doi.org/10.1088/00261394/38/1/6

    Article  Google Scholar 

  21. Rogozhin, E.A., Milyukov, V.K., Mironov, A.P., Ovsyuchenko, A.N., Gorbatikov, A.V., Andreeva, N.V., Lukashova, R.N., Drobyshev, V.N., and Khubaev, Kh.M., Modern horizontal movements in the zones of strong and moderate earthquakes of the early 21st century in the central sector of the Greater Caucasus: Characteristics inferred from GPS observations and connection with neotectonics and deep structure of the Earth’s crust, Izv., Atmos. Oceanic Phys., 2019, vol. 55, pp. 759–769. https://doi.org/10.1134/S0001433819070053

    Article  Google Scholar 

  22. Sasagawa, S., and Zumberge, M.A., Absolute gravity measurements in California, 1984–1989, J. Geophys. Res., 1991, vol. 96, no. B2, pp. 2501–2513. https://doi.org/10.1029/90JB02283

    Article  Google Scholar 

  23. Shestakov, N., Gerasimenko, M., Takahashi, H., Kasahara, M., Bormotov, V., Bykov, V., Kolomiets, A., Gerasimov, G., Vasilenko, N., Prytkov, A., Timofeev, V., Ardyukov, D., and Kato, T., Present tectonics of the southeast of Russia as seen from GPS observations, Geophys. J. Int., 2011, vol. 184, no. 2, pp. 529–540.

    Article  Google Scholar 

  24. Sidorov, V.A. and Kuz’min, Yu.O., Sovremennye dvizheniya zemnoi kory osadochnykh basseinov (Contemporary Movements of the Earth’s Crust in Sedimentary Basins), Moscow: Nauka, 1989. SOPAC—Service Orbit and Permanent Array Center. http://sopac-csrc.ucsd.edu/index.php/sopac/.

  25. Steblov, G.M., Vasilenko, N.F., Prytkov, A.S., Frolov, D.I., and Grekova, T.A., Dynamics of the Kuril-Kamchatka subduction zone from GPS data, Izv., Phys. Solid Earth, 2010, vol. 46, pp. 440–445. https://doi.org/10.1134/S1069351310050095

    Article  Google Scholar 

  26. Stus, Y.F., Arnautov, G.P., Kalish, E.N., and Timo-feev, V.Y., Non-tidal gravity variation and geodynamic processes, in Gravity and Geoid, Springer, 1995, pp. 35–43.

    Google Scholar 

  27. Szostak-Chrzanowski, A., Chrzanowski, A., and Ortiz, A., Modeling of ground subsidence in oil fields, Can. Cent. Geod. Eng., 2006, no. 9, pp. 133–146.

  28. Tatarinov, V.N., Aleshin, I.M., and Tatarinova, T.A., Experience of observations by methods of space geodesy at nuclear facilities, Nauka Tekhnol. Razrab., 2018, vol. 97, no. 2, pp. 25–44. https://doi.org/10.21455/std2018.2-2

    Article  Google Scholar 

  29. Timofeev, V.Yu., Ardyukov, D.G., Timofeev, A.V., and Boiko, E.V., The theory of plate tectonics and the results of measurements at the permanent station of space geodesy NVSK, Vestn. Sib. Gos. Univ. Geosist. Tekhnol., 2019, vol. 24, no. 2, pp. 95–108. https://doi.org/10.33764/2411-1759-2019-24-2

    Article  Google Scholar 

Download references

Funding

The study was carried out according to the research plans of the Institute of Petroleum Geology and Geophysics, Siberian Branch, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Yu. Timofeev.

Ethics declarations

The authors declare no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Timofeev, V.Y., Ardyukov, D.G., Nosov, D.A. et al. Absolute Gravimetric and Satellite Geodetic Measurements of Recent Motions at Gas and Oil Deposits in Transpolar Western Siberia. Seism. Instr. 57, 572–586 (2021). https://doi.org/10.3103/S0747923921050091

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0747923921050091

Keywords:

Navigation