Skip to main content
Log in

Periodic Solutions to the Navier–Stokes Equation for a Viscous Incompressible Fluid and Gas in Space \({\mathbb{R}}^{n}\)

  • Published:
Moscow University Computational Mathematics and Cybernetics Aims and scope Submit manuscript

Abstract

Initial value problems are considered for equations of motion of a viscous incompressible fluid and gas in Lagrangian variables. It is shown that the incompressible fluid motion is not related to pressure. In the absence of external forces, the pressure is constant and allows the fluid to make free motion. This motion is purely turbulent and is described by quasi-linear equations of parabolic type. The existence and uniqueness of the classical periodic solution to the initial-value problem in the \({\mathbb{R}}^{n}\) at \(n\geqslant 2\) are shown. Equations of motion of fluid and gas in steady-state conditions are derived. The problem on a turbulent flow of a partially compressible fluid and gas is solved. It is established that there is no turbulent flow in the incompressible fluid. It is shown that spatially stable periodic structures appear as a result of synchronization of frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. L. D. Landau and E. M. Lifshitz, Theoretical Physics, Vol. 6: Hydrodynamics (Nauka, Moscow, 1959) [in Russian]; English transl.: Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Pergamon Press, New York, 1987).

  2. L. Caffarelli, R. Kohn, and L. Nirenberg, ‘‘Partial regularity of suitable weak solutions of the Navier–Stokes equations,’’ Comm. Pure Appl. Math. 35 (6), 771–831 (1982). https://doi.org/10.1002/cpa.3160350604

    Article  MathSciNet  MATH  Google Scholar 

  3. H. Amann, ‘‘On the strong solvability of the Navier–Stokes equations,’’ J. Math. Fluid Mech. 2 (1), 16–98 (2000). https://doi.org/10.1007/s000210050018

    Article  MathSciNet  MATH  Google Scholar 

  4. H. Koch and D. Tataru, ‘‘Well-posedness for the Navier–Stokes equations,’’ Adv. Math. 157 (1), 22–35 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  5. I. Gallagher, ‘‘Critical function spaces for the well-posedness of the Navier–Stokes initial value problem,’’ in Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, Ed. by Y. Giga and A. Novotný (Springer, Cham, 2016), pp. 647–685. https://doi.org/10.1007/978-3-319-13344-7_12

  6. A. Argenziano, M. Cannone, and M. Sammartino, ‘‘Navier–Stokes equations in the half space with non compatible data,’’ arXiv preprint arXiv:2202.09415 (2022). https://doi.org/10.48550/arXiv.2202.09415

  7. M. Cannone, ‘‘Harmonic analysis tools for solving the incompressible Navier–Stokes equations,’’ in Handbook of Mathematical Fluid Dynamics, Ed. by S. J. Friedlander and D. Serre (Elsevier/North-Holland, Amsterdam, 2004), Vol. 3, pp. 161–244. https://doi.org/10.1016/S1874-5792(05)80006-0

  8. O. A. Ladyzhenskaya, Theory of Viscous Incompressible Flow (Gordon and Breach, New York, 1963).

    MATH  Google Scholar 

  9. O. A. Ladyzhenskaya, V. A. Solonnikov, and N. N. Ural’tseva, Linear and Quasi-Linear Equations of Parabolic Type (Nauka, Moscow, 1967; Am. Math. Soc., Providence, RI, 1968).

  10. S. A. Nazarov and K. Pileckas, ‘‘On steady Stokes and Navier–Stokes problems with zero velocity at infinity in a three-dimensional exterior domain,’’ J. Math. Kyoto Univ. 40 (3), 475–492 (2000). https://doi.org/10.1215/kjm/1250517677

    Article  MathSciNet  MATH  Google Scholar 

  11. V. Šverák, ‘‘On Landau’s solutions of the Navier–Stokes equations,’’ J. Math. Sci. 179 (1), 208–228 (2011). https://doi.org/10.1007/s10958-011-0590-5

    Article  MathSciNet  MATH  Google Scholar 

  12. C. Bjorland, L. Brandolese, D. Iftimie, and M. E. Schondek, ‘‘\(L^{p}\)-solutions of the steady-state Navier–Stokes equations with rough external forces,’’ Commun. Partial Differ. Equations 36 (2), 216–246 (2011). https://doi.org/10.1080/03605302.2010.485286

    Article  Google Scholar 

  13. J. Guillod, ‘‘Steady solutions of the Navier–Stokes equations in the plane,’’ arXiv preprint arXiv:1511.03938v1 (2015). https://doi.org/10.48550/arXiv.1511.03938

  14. S. Smale, ‘‘Mathematical problems for the next century,’’ Math. Intell. 20 (2), 7–15 (1998). https://doi.org/10.1007/BF03025291

    Article  MathSciNet  MATH  Google Scholar 

  15. C. L. Fefferman, ‘‘Existence and smootheness of the Navier–Stokes equation,’’ in The Millennium Prize Problems, Ed. by J. Carlson, A. Jaffe, and A. Wiles (Clay Math. Inst., Cambridge, MA; Am. Math. Soc., Providence, RI, 2006), pp. 57–67. https://www.claymath.org/millennium/navier-stokes-equation/

  16. A. V. Baev, ‘‘On the solution of the Navier–Stokes equation for a viscous incompressible fluid in an \(n\)-dimensional bounded domain and in the whole space \({\mathbb{R}}^{n}\),’’ in Applied Mathematics and Computer Science (MAKS Press, Moscow, 2022), Vol. 71, pp. 4–23 [in Russian].

  17. A. Friedman, Differential Equations of Parabolic Type (Dover, Mineola, N.Y., 1964).

    MATH  Google Scholar 

  18. G. M. Kobel’kov, ‘‘On methods of solving the Navier–Stokes equations,’’ Sov. Math. Dokl. 19, 1425–1428 (1978).

    MATH  Google Scholar 

  19. S. Yu. Dobrokhotov and A. I. Shafarevich, ‘‘On the behavior of an incompressible fluid velocity field at infinity,’’ Fluid Dyn. 31 (4), 511–514 (1996). https://doi.org/10.1007/BF02031756

    Article  MathSciNet  MATH  Google Scholar 

  20. A. S. Mishchenko and A. T. Fomenko, A Course of Differential Geometry and Topology (Mosk. Gos. Univ., Moscow, 1980; Mir, Moscow, 1988).

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation part of the program of the Moscow Center of Fundamental and Applied Mathematics according to agreement no. 075-15-2022-284.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Baev.

Additional information

Translated by D. Churochkin

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baev, A.V. Periodic Solutions to the Navier–Stokes Equation for a Viscous Incompressible Fluid and Gas in Space \({\mathbb{R}}^{n}\). MoscowUniv.Comput.Math.Cybern. 47, 1–11 (2023). https://doi.org/10.3103/S0278641923010028

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0278641923010028

Keywords:

Navigation