Skip to main content
Log in

Fuzzy Medians as Aggregators of Fuzzy Information

  • Published:
Scientific and Technical Information Processing Aims and scope

Abstract—

On the basis of the fuzzy medians of fuzzy number systems, a class of averaging operators is introduced and studied for the implementation of the problem of the aggregation of fuzzy information. The established properties of symmetry, idempotence, continuity, and monotonicity of averaging operators are a modification of the characteristic properties of scalar aggregation functions for the fuzzy case. Additionally, the properties of additivity and homogeneity, as an extreme property, are established. This determines the adequacy of the use of fuzzy medians in the tasks of aggregating fuzzy information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. Mesiar, R., Kolesárová, A., Calvo, T., and Komorníková, M., A review of aggregation functions, Fuzzy Sets and Their Extensions: Representation, Aggregation and Models, Bustince, H., Herrera, F., and Montero, J., Eds., Studies in Fuzziness and Soft Computing, vol. 220, Berlin: Springer, 2008, pp. 121–144. https://doi.org/10.1007/978-3-540-73723-0_7

  2. Ledeneva, T. and Podval’nyi, S., The aggregation of information in the evaluation system, Vestn. Voronezh. Gos. Univ., Ser. Sist. Anal. Inf. Tekhnol., 2016, no. 4, pp. 155–164.

  3. Grabisch, M., Marichal, J.-L., Mesiar, R., and Pap, E., Aggregation Functions, Encyclopedia of Mathematics and Its Applications, Cambridge: Cambridge Univ. Press, 2009. https://doi.org/10.1017/cbo9781139644150

  4. Beliakov, G., Bustince Sola, H., and Calvo, T., A Practical Guide to Averaging Functions, Studies in Fuzziness and Soft Computing, vol. 329, Cham: Springer, 2016. https://doi.org/10.1007/978-3-319-24753-3

  5. Dubuois, D. and Prade, H., Possibility Theory, Wiley Encyclopedia of Electrical and Electronics Engineering, 1999. https://doi.org/10.1002/047134608X.W3502

    Book  Google Scholar 

  6. Klement, E., Mesiar, R., and Pap, E., Triangular norms. Position paper I: Basic analytical and algebraic properties, Fuzzy Sets Syst., 2004, vol. 143, no. 1, pp. 5–26. https://doi.org/10.1016/j.fss.2003.06.007

    Article  MathSciNet  Google Scholar 

  7. Grabisch, M. and Labreuche, C., A decade of application of the Choquet and Sugeno integrals in multi-criteria decision aid, Ann. Oper. Res., 2008, vol. 175, no. 1, pp. 247–286. https://doi.org/10.1007/s10479-009-0655-8

    Article  MathSciNet  Google Scholar 

  8. Kwak, K.-Ch. and Pedrycz, W., Face recognition: A study in information fusion using fuzzy integral, Pattern Recognit. Lett., 2005, vol. 26, no. 6, pp. 719–733. https://doi.org/10.1016/j.patrec.2004.09.024

    Article  ADS  Google Scholar 

  9. Calvo, T. and Mesiar, R., Generalized medians, Fuzzy Sets Syst., 2001, vol. 124, no. 1, pp. 59–64. https://doi.org/10.1016/s0165-0114(00)00071-3

    Article  MathSciNet  Google Scholar 

  10. López de Hierro, A.F.R., Roldán, C., Bustince, H., Fernández, J., Rodriguez, I., Fardoun, H., and Lafuente, J., Affine construction methodology of aggregation functions, Fuzzy Sets Syst., 2020, vol. 414, pp. 146–164. https://doi.org/10.1016/j.fss.2020.04.022

    Article  MathSciNet  Google Scholar 

  11. Torra, V., Andness directedness for operators of the OWA and WOWA families, Fuzzy Sets Syst., 2021, vol. 414, pp. 28–37. https://doi.org/10.1016/j.fss.2020.09.004

    Article  MathSciNet  Google Scholar 

  12. Bustince, H., Mesiar, R., Fernandez, J., Galar, M., Paternain, D., Altalhi, A., Dimuro, G.P., Bedregal, B., and Takáč, Z., d-Choquet integrals: Choquet integrals based on dissimilarities, Fuzzy Sets Syst., 2021, vol. 414, pp. 1–27. https://doi.org/10.1016/j.fss.2020.03.019

    Article  MathSciNet  Google Scholar 

  13. Gini, C., Le Medie, Milano: Unione Tipografico–Editrice Torinese, 1958.

    Google Scholar 

  14. Averkin, A.N., Nechetkie mnozhestva v modelyakh upravleniya i iskusstvennogo intellekta (Fuzzy Sets in Models of Control and Artificial Intelligence), Moscow: Nauka, 1986.

  15. Calvo, T. and Mesiar, R., Criteria importances in median-like aggregation, IEEE Trans. Fuzzy Syst., 2001, vol. 9, no. 4, pp. 662–666. https://doi.org/10.1109/91.940976

    Article  Google Scholar 

  16. Nguyen, H.T. and Wu, B., Fundamentals of Statistics with Fuzzy Data, Studies in Fuzziness and Soft Computing, vol. 198, Berlin: Springer, 2006. https://doi.org/10.1007/11353492

  17. De la Rosa de Sáa, S., Lubiano, M.A., Sinova, B., and Filzmoser, P., Robust scale estimators for fuzzy data, Adv. Data Anal. Classification, 2015, vol. 11, no. 4, pp. 731–758. https://doi.org/10.1007/s11634-015-0210-1

    Article  MathSciNet  Google Scholar 

  18. Kaleva, O. and Seikkala, S., On fuzzy metric spaces, Fuzzy Sets Syst., 1984, vol. 12, no. 3, pp. 215–229. https://doi.org/10.1016/0165-0114(84)90069-1

    Article  Google Scholar 

  19. Diamond, P. and Kloeden, P., Metric spaces of fuzzy sets, Fuzzy Sets Syst., 1990, vol. 35, no. 2, pp. 241–249. https://doi.org/10.1016/0165-0114(90)90197-e

    Article  MathSciNet  Google Scholar 

  20. Smolyak, S.A., Otsenki effektivnosti investitsionnykh proektov v usloviyakh riska i neopredelennosti (Efficiency Estimates of Investment Projects under Conditions of Risk and Uncertainty), Moscow: Nauka, 2002.

  21. Kolmogorov, A.N. and Fomin, S.V., Elements of the Theory of Functions and Functional Analysis, Moscow: URSS, 2019; Courier Corporation, 1957.

  22. De la Rosa de Saa, S., Lubiano, M., Sinova, B., Gil, M., and Filzmoser, P., Location-free robust scale estimates for fuzzy data, IEEE Trans. Fuzzy Syst., 2020, vol. 29, no. 6, pp. 1682–1694. https://doi.org/10.1109/tfuzz.2020.2984203

    Article  Google Scholar 

  23. Perez-Fernandez, R., On an order-based multivariate median, Fuzzy Sets Syst., 2021, vol. 414, pp. 70–84. https://doi.org/10.1016/j.fss.2020.09.001

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. L. Khatskevich.

Ethics declarations

The author of this work declares that he has no conflicts of interest.

Additional information

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khatskevich, V.L. Fuzzy Medians as Aggregators of Fuzzy Information. Sci. Tech. Inf. Proc. 50, 557–562 (2023). https://doi.org/10.3103/S0147688223060060

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0147688223060060

Keywords:

Navigation