Skip to main content
Log in

The comparative analysis of methods for estimation of the power spectrum

  • Published:
Automatic Control and Computer Sciences Aims and scope Submit manuscript

Abstract

This article provides a comparative analysis of eleven major nonparametric, parametric, and subspace methods for estimation of the power spectrum. We analyze the dependence of the resolving capacity of the methods of the power’s spectrum estimation on the signal/noise ratio (SNR), the signal duration, and the amount of lost data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Proakis, J.G., and Manolakis, D.G., Digital Signal Processing: Principles, Algorithms and Applications, Englewood Cliffs, NJ: Printice Hall, 1996.

    Google Scholar 

  2. Kay, S.M., Modern Spectral Estimation, Englewood Cliffs, NJ: Printice Hall, 1988.

    MATH  Google Scholar 

  3. Stoica, P. and Moses, R., Introduction to Spectral Analisys, Upper Sadle River, NJ: Printice Hall, 1997.

    Google Scholar 

  4. Kay, S.M and Marple, S.L., Spectrum Analysis — a Modern Perspective, Proc. IEEE, 1981, vol. 69, pp. 1380–1419.

    Article  Google Scholar 

  5. Thomson, D.J., Spectrum Estimation and Harmonic Analysis, Proc. IEEE, 1982, vol. 70, pp. 1055–1096.

    Article  Google Scholar 

  6. Yule, G.U., On a Method of Investigating Periodicities in Distributed Series with Special References to Wolfer’s Sunspot Numbers, Philos. Trans. R. Soc., 1927, London, Ser. A, vol. 226, pp. 267–298.

    Article  Google Scholar 

  7. Parzen, E., On Consistent Estimates of the Spectrum of a Stationary Time Series, Am. Math. Stat., 1957, vol. 28, pp. 329–348.

    Article  MATH  MathSciNet  Google Scholar 

  8. Blackman, R.B. and Tukey, J.W., The Measurement of Power Spectra, Dover, New York, 1958.

    Google Scholar 

  9. Burg, J.P., Maximum Entropy Spectral Analysis, Proc. 37th Meeting of the Society of Exploration Geophysicians, Oklahoma City, October, 1967.

  10. Johnson, D.H., The Application of Spectral Estimation Methods to Bearing Estimation Problems, Proc. IEEE, 1982, vol. 70, pp. 1018–1028.

    Article  Google Scholar 

  11. McClellan, J.H., Multidimensional Spectral Estimation, Proc. IEEE, 1982, vol. 70, pp. 1029–1039.

    Article  Google Scholar 

  12. Nikias, C.L. and Scott, P.D., Energy-Weighted Linear Predictive Spectral Estimation: a New Method Combining Robustness and Hight-Resolution, IEEE Trans. Acoustics, Speech and Signal Processing, 1982, vol. 30, pp. 287–292.

    Article  Google Scholar 

  13. Welch, P.D., The Use of Fast Fourier Transform for the Estimation of Power Spectra: a Method Based on Time Averaging over Short, Modified Periodograms, IEEE Trans. Audio Electroacoust, 1967, vol. 15, pp. 70–73.

    Article  MathSciNet  Google Scholar 

  14. Percival, D.B., and Walden, A.T., Spectral Analysis for Physical Applications: Multitaper and Conventional Univariate Techniques, Cambridge University Press, 1993.

  15. Marple, S.L., Minimum Variance Spectral Estimator Fast Algorithm Based on Covariance and Modified Covariance Methods of Linear Prediction, Signal, Systems and Computers, Conference Record of the Thirty-Fifth Asimolar Conference, Pacific Grove, C.A., 2001, vol. 1, pp. 711–714.

    Google Scholar 

  16. Lomb, N.R., Least-Squares Frequency Analysis of Unequally Spaced Data, Astrophysics and Space Science, 1967, vol. 39, pp. 447–462.

    Article  Google Scholar 

  17. Scargle, J.D., Studies in Astronomical Time Series Analysis III. Fourier Transforms, Autocorrelation Functions, and Cross-Correlation Functions of Unevently Spaced Data, The Astrophysics Journal, 1989, vol. 343, pp. 874–887.

    Article  Google Scholar 

  18. Broersen, P.M.T., Automatic Spectral Analysis with Time Series Models, IEEE Trans. On Instrumentation and Measurement, 2002, vol. 51, pp. 211–216.

    Article  Google Scholar 

  19. Isaksson, A.J., Identification of ARX-models Subject To Missing Data, IEEE Trans. On Automatic Control, 1993, vol. 38, pp. 813–819.

    Article  MATH  MathSciNet  Google Scholar 

  20. Ljung, L., System identification: Theory for the Users, Upper Saddle River, NJ: Printiec Hall, 1999.

    Google Scholar 

  21. Wallin, R., Isaksson, A.J. and Ljung, L., An Iterative Method for Identification of ARX Models from Incomplete Data, Proc. of CDC/IEEE Conf., Sydney, Australia, 2000, pp. 203–208.

  22. Wallin, R. and Isaksson, A.J., Multiple Optima in Identification of ARX Models Subject to Missing Data, EURASIP Journal on Applied Signal Processing, 2002, vol. 1, pp. 30–37.

    Google Scholar 

  23. Pintelon, R. and Schoukens, J., Frequency Domain System Identification with Missing Data, IEEE Trans. on Automatic Control, 2000, vol. 45, pp. 364–369.

    Article  MATH  MathSciNet  Google Scholar 

  24. Mirsaidi, S., Fleury, G.A. and Oksman, J., LMS-like AR Modeling in the Case of Missing Observations, IEEE Trans. on Signal Processing, 1997, vol. 45, pp. 1574–1583.

    Article  Google Scholar 

  25. de Waele, S. and Broersen, P.M.T., The Burg Algorithm for Segments, IEEE Trans. on Signal Processing, 2000, vol. 48, pp. 2876–2880.

    Article  Google Scholar 

  26. Boashash, B., Time-Frequency Signal Analysis, Melboume, Australia: Longman, Cheshire, 1991.

    Google Scholar 

  27. Donoho, D.L., Johnstone, G.K. and Pickard, D., Wawelet Shrinkage: Asymptotia, J. Roy. Statist. Soc., 1995, vol. 57, pp. 301–369.

    MATH  Google Scholar 

  28. Qian, S. and Chen, D., Discrete Gabor Transform, IEEE Trans. on Signal Processing, 1993, vol. 41, pp. 2429–2438.

    Article  MATH  Google Scholar 

  29. Peleg, S., and Friedlander, B., Multicomponent Signal Analysis Using the Polynomial-Phase Transform, IEEE Trans. on Aerospace and Elec. Sys., 1996, vol. 32, pp. 378–387.

    Article  Google Scholar 

  30. Hussain, Z.M. and Boashash, B., Adaptive Instantaneous Frequency Estimation of Multi-Component FM Signal Using Quadratic Time-Frequency Distributions, IEEE Trans. on Signal Processing, 2002, vol. 50, pp. 1866–1876.

    Article  MathSciNet  Google Scholar 

  31. Boashash, B. and O’shea, P.J., Use of Cross Wigner-Ville Distribution for Instaneous Frequency Estimation, IEEE Trans. on Signal Processing, 1993, vol. 41, pp. 1439–1445.

    Article  MATH  Google Scholar 

  32. Katkovnik, V. and Stankovic, L.J., Instantaneous Frequency Estimation Using the Wigner Distribution with Varying and Data Driven Window Length, IEEE Trans. on Signal Processing, 1998, vol. 46, pp. 2315–2325.

    Article  Google Scholar 

  33. Francos, A. and Porat, M., Analysis and Synthesis of Multicomponent Signals Using Positive TFDs, IEEE Trans. on Signal Processing, 1999, vol. 47, pp. 493–504.

    Article  Google Scholar 

  34. Choi, H., and Williams, W., Improved Time-Frequency Representation of Multi-Components Signals Using Exponential Kernels, IEEE Trans. on Signal Processing, 1989, vol. 37, pp. 862–871.

    Article  Google Scholar 

  35. Dubois, C., Davy, M. and Idear, J., Tracking of Time-Frequency Components Using Particle Filtering, IEEE Int.Conf. Acoustics, Speech, Signal Processing (ICASSP) 2005, Philadelphia, PA, 2005, pp.18–23.

  36. Tsakonas, E.E., Sidiropoulos, N.D., and Swami, A., Optimal Particle Filters for Tracking a Time-Varying Harmonic or Chirp Signal, IEEE Trans. on Signal Processing, 2008, vol. 56, pp. 4598–4610.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Kazlauskas.

Additional information

Original Russian Text © K. Kazlauskas, Ya. Kazlauskas, G. Petreykite, 2009, published in Avtomatika i Vychislitel’naya Tekhnika, 2009, No. 6, pp. 47–60.

About this article

Cite this article

Kazlauskas, K., Kazlauskas, Y. & Petreykite, G. The comparative analysis of methods for estimation of the power spectrum. Aut. Conrol Comp. Sci. 43, 317–327 (2009). https://doi.org/10.3103/S0146411609060054

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0146411609060054

Key words

Navigation