Skip to main content
Log in

Evolution of the iron-silicate and carbon material of carbonaceous chondrites

  • Published:
Moscow University Geology Bulletin Aims and scope Submit manuscript

Abstract

The observed consistence of the composition of chondrules and the matrix in chondrites is explained by their origin as a result of chondrule-matrix splitting of the material of primitive (not layered) planets. According to the composition of chondrites, two main stages in the evolution of chondritic planets (silicate-metallic and olivine) are distinguished. Chondritic planets of the silicate-metallic stage were analogs of chondritic planets, whose layering resulted in the formation of the terrestrial planets. The iron-silicate evolution of chondritic matter is correlated with the evolution of carbon material in the following sequence: diamond ± moissanite → hydrocarbons → primitive organic compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Besmen, A., Hoppe, P., and Ott, U., Search for extinct aluminum-26 and titanium-44 nanodiamonds Allende CV3 and Murchison CM2 meteorites, Meteorit. Planet. Sci., 2011, vol. 46, 1265–1275.

    Article  Google Scholar 

  • Biryukov, I.I., Mineralogy and genetic types of matter in Efremovka coal chondrite meteorite: Extended Abstract of Cand. Sci. Dissertation, 1998.

    Google Scholar 

  • Brack, A., From interstellar amino acids to prebiotic catalytic peptides: A review, Chem. Biodiversity, 2007, vol. 4, pp. 665–679.

    Article  Google Scholar 

  • Brearly, A.J. and Jones, Rh.H., Chondritic meteorites, Rev. Mineral., 1998, vol. 36, pp. 331–370.

    Google Scholar 

  • Brenker, F.E. and Krot, A.N., Evidence for a high tempetature episode during multistage alteration of Allende dark inclusions, Abstr. 65 Annual Meteoritical Soc. Meet., Los Angeles, 2002.

  • Buchanan, P.C., Zolensky, M.E., and Ried, A.M., Petrology of Allende Dark Inclusions, Geochim, Cosmochim. Acta, 1997, vol. 61, no. 8, pp. 1733–1743.

    Article  Google Scholar 

  • Carporzen, L., Wiess, B.P., Elkins-Tanton, L., and Shuster, D.L., Magnetic evidence for a partly differentiated carbonaceoucs chondrite parent body, Geochim. Cosmochim. Acta, 2011, vol. 108, no. 16, pp. 6386–6389.

    Google Scholar 

  • Charbonneau, D., Atmosphere out of that word, Nature, 2003, vol. 422, pp. 124–125.

    Article  Google Scholar 

  • Clayton, R.N. and Mayeda, T., Oxigen isotope studies of carbonaceous chondrites, Geochim. Cosmochim. Acta, 1999, vol. 63, nos. 13-14, pp. 2089–20104.

    Article  Google Scholar 

  • Donaldson, C.H., An experimental investigation of olivine morphology, Contrib. Mineral. Petrol., 1976, vol. 57, no. 2, 187–213.

    Article  Google Scholar 

  • Elkins-Tanton, L.T. and Zuber, M., Chondrite as samples of differentiated planetesimals, Earth Planet. Sci. Lett., 2011, vol. 305, pp. 1–10.

    Article  Google Scholar 

  • Galimov, E.M., Fenomen zhizni. Mezhdu ravnovesiem i nelineinost’yu. Proiskhozhdenie i printsipy evolyutsii (Life phenomenon: Between equilibrium and nonlinearity (origin and evolution principles)), Moscow: URSS, 2001.

    Google Scholar 

  • Gilmour, J.D., “Planetary” noble gas components and nucleosynthetic history of solar system material, Geochim. Cosmochim. Acta, 2010, vol. 74, pp. 380–393.

    Article  Google Scholar 

  • Glazovskaya, L.I. and A. A. Ul’yanov, Hydrocarbon component of Efremovka coal chondrite meteorite, in Tez. dokl. XI Vseross. petrograf. sov., Yekaterinburg, 2010 (Abstr. XI All-Russia Petrographic Meeting, Yekaterinburg, 2010), vol. 1, pp. 171–172.

  • Hezel, D.C. and Palme, H., Constrains for chondrule formation from Ca-Al distribution in carbonaceouce chondrites, Earth Planet. Sci. Lett., 2008, vol. 265, pp. 716–725.

    Article  Google Scholar 

  • Irvine, W.M., Extraterrestrial organic matter: A review, Origins Life Evol. Biospheres, 1998, vol. 28, pp. 365–383.

    Article  Google Scholar 

  • Kissin, Y.V., Hydrocarbone components in carbonaceouse meteorites, Geochim. Cosmochim. Acta, 2003, vol. 67, no. 9, pp. 1723–1735.

    Article  Google Scholar 

  • Krot, A.N., Meibom, A., and Russel, S.S., A new astrophysical setting for chondrule formation, Science, 2001, vol. 291, pp. 1776–1779.

    Article  Google Scholar 

  • Krot, A.N., Amelin, Y., Bland, P., Ciesla, F.J., Connelly, J., Davis, A.M., Huss, G.R., Hutcheon, I.D., Makide, K., Nagashima, K., Nyquist, L.E., and Russell, S.S., “Origin and chronology of chondritic components: A review, Geochim. Cosmochim. Acta, 73, 4963–4997 (2009)

    Google Scholar 

  • Marakushev, A.A., Granovsky, L.B., Zinov’eva, N.G., Mitreikina, O.B., and Chaplygin, O.V., Kosmicheskaya petrologiya (Cosmic petrology), Moscow: Nauka, 2003.

    Google Scholar 

  • Marakushev, A.A., Cosmic petrology and the planetary evolution of the Solar System, Astron. Astrophys. Trans., 2005, vol. 23, no. 6, pp. 507–519.

    Article  Google Scholar 

  • Marakushev, A.A. and Marakushev, S.A., Geochemical basis of theory of origin of life, Dokl. Earth Sci., 2008, vol. 420, no. 4, pp. 602–607.

    Article  Google Scholar 

  • Marakushev, A.A., Zinov’eva, N.G., and Granovsky, L.B., Genetic relation between meteorites and terrestrial and lunar rocks, Petrology, 2010, vol. 18, no. 7, pp. 677–720.

    Article  Google Scholar 

  • Marakushev, A.A., and Marakushev, S.A., Fluid Evolution of the Earth and Origin of the Biosphere, in Man and the Geosphere (New York: Nova Science, 2010), Chapter 1, pp. 3–31.

    Google Scholar 

  • Marakushev, A.A., Glazovskaya, L.I., and Marakushev, S.A., Correlation of the formation of iron-silicate and carbon matter of carbonaceous chondrites, Dokl. Earth Sci., 2010, vol. 434, no. 2, pp. 1354–1358.

    Article  Google Scholar 

  • Marakushev, A.A., Zinovieva, N.G., and Granovsky, L.B., Cosmochemical derivation of the composition of the chondrite material, XXIV Symposium on Antarctic Meteorites, Tokyo, 2011.

  • Meierhenrich, U.J., Caro, G.M.M., Bredehoft, J.H., Jessberger, E.K., and Thiemann, W.H.P., Identification of diamino acids in the Murchison meteorite, Proc. Natl. Acad. Sci. U. S. A., 2004, vol. 101, no. 25, pp. 9182–9186.

    Article  Google Scholar 

  • Palme, K. and Hezel, D.C., Matrix-chondrule relationship and the origin of chondrules, Formation of the first solids in the Solar system, Kauai, HW, 2011. www.lpi.usra.edu/meetings/solids2011/pdf/9088.pdf

  • Pizzarello, S., Cooper, G.W., and Flynn, G.J., The nature and distribution of the organic material in carbonaceous chondrites and interplanetary dust particles, in Meteorites and the early Solar system, Tuscon, AZ: Univ. of Arizona, 2006, pp. 625–651.

    Google Scholar 

  • Pizzarello, S. and Holmes, W., Nitrogen-containing compounds in two CR2 meteorites: 15N composition, molecular distribution and precursor molecules, Geochim. Cosmochim. Acta, 2009, vol. 73, pp. 2150–2162.

    Article  Google Scholar 

  • Russel, S.S., Krot, A.N., Huss, G.R., Keil, K., Itoh, S., Yurimoto, H., The genetic relationship between refractory inclusions and chondrules, ASP Conf. Ser., 2005, vol. 341, pp. 317–350.

    Google Scholar 

  • Shimoyama, A. and Ogasawara, R., Dipeptides and diketopiperazines in the Yamato and Murchison carbonaceous chondrites, Origins Life Evol. Biospheres, 2002, vol. 32, pp. 165–179.

    Article  Google Scholar 

  • Storrie-Lombardi, M.C., Biochemical constraints in aprotobiotic Earth devoid of basic amino acids: The “BAA(-) World,” Astrobiology, 2010, vol. 10, no. 10, pp. 989–1000.

    Article  Google Scholar 

  • Trifonov, E.N., Tracing life back to elements, Phys. Life Rev., 2008, vol. 5, pp. 121–132.

    Article  Google Scholar 

  • Vityazev, A.V., Pechernikova, G.V., and Safronov, V.S., Planety zemnoi gruppy. Proiskhozhdenie i rannyaya evolyutsiya (The Terrestrial Planets: Origin and Early Evolution), Moscow: Nauka, 1990.

    Google Scholar 

  • Wood, J.A., Origin of the Solar System, in In The New Solar System, Beatty, J.K., Petersen, C.C., and Chaikin, A., Eds., Cambridge, MA: Sky Publ. Co., 1999, pp. 13–22.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Marakushev.

Additional information

Original Russian Text © A.A. Marakushev, L.I. Glazovskaya, S.A. Marakushev, 2013, published in Vestnik Moskovskogo Universiteta. Geologiya, 2013, No. 5, pp. 3–17.

About this article

Cite this article

Marakushev, A.A., Glazovskaya, L.I. & Marakushev, S.A. Evolution of the iron-silicate and carbon material of carbonaceous chondrites. Moscow Univ. Geol. Bull. 68, 265–281 (2013). https://doi.org/10.3103/S0145875213050074

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0145875213050074

Keywords

Navigation