Skip to main content
Log in

The influence of conceptual model of sedimentary formation hydraulic heterogeneity on contaminant transport simulation

  • Published:
Moscow University Geology Bulletin Aims and scope Submit manuscript

Abstract

Development of heterogeneity model of layered sandy-clay formation and impact of this model on transport is considered. The lithological data of more than 250 wells that captured 300 meters formation at the investigated area of 40 km2 are used for model of heterogeneity construction. Two models of heterogeneity were developed with using these well data: TP/MC model based on 3D Markov chain simulation for four hydrofacies and 2D kriging interpolation of thicknesses of elementary lithological layers. Simulation of conservative transport by particle tracking algorithm shows that horizontal transport along layers is similar for both models. The main difference is in vertical transport cross formation bedding. The kriging interpolation model gives more conservative results than TP/MC model due to larger characteristic horizontal length of layers in the kriging model. As the result vertical effective hydraulic conductivity of formation is in two times larger and the first particle arriving time is in four times faster in TP/MC model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bishop, C.E., Wallace, J., and Lowe, M., Recommended Septic Tank Soil-Absorption-System Densities for Cache Valley, Cache County, Utah, Report of Investigation. Utah Geological Survey. Division of Utah Department of Natural Resources, 2007, vol. 257.

  • Bulynnikova, A.A. and Surkov, V.S., Geologicheskoe stroenie i perspektivy neftegazonosnosti yugo-vostochnoi chasti Zapadno-Sibirskoi nizmennosti (Geological Structure and Oil-and-Gas Bearing Prospects of the Southeastern Part of West Siberia), Moscow: Gostoptekhizdat, 1962.

    Google Scholar 

  • Carle, S.F. and Fogg, G.E., Transition Probability-Based Indicator Geostatistics, Math. Geol., 1996, vol. 28, no. 4, pp. 453–477.

    Article  Google Scholar 

  • Carle, S.F. and Fogg, G.E., Moceling Spatial Variability with One- and Multi-Dimensional Markov Chains, Math. Geol., 1997, vol. 29, no. 7, pp. 891–918.

    Article  Google Scholar 

  • Carle, S.F., T-PROGS: Transition Probability Geostatistical Software, Univ. of California, 1998.

  • Chernyaev, E.V., Koshkarev, V.L., Kolmakova, O.V., et al., Geologic-Geophysical Model of the Seversk Area, Izv. Tomsk. Politekh. Univ., 2002, vol. 305, no. 6, pp. 414–433.

    Google Scholar 

  • Chiang, W.H. and Kinzelbach, W., 3D-Groundwater Modeling with PMWI, Berlin: Springer, 2001.

    Google Scholar 

  • Dai, Z., Wolfsberg, A., Lu, Z., and Ritzi, R.J., Representing Aquifer Architecture in Macrodispersivity Models with An Analytical Solution of the Transition Probability Matrix, Geophys. Res. Lett., 2007, vol. 34, no. 6, p. L20406.

    Article  Google Scholar 

  • Dubrule, O., Geostatistics for Seismic Data Integration in Earth Models, Zeist: EAGE, 2002.

    Google Scholar 

  • Elfeki, A. and Dekking, M., A Markov Chain Model for Subsurface Characterization: Theory and Applications, Math. Geol., 2001, vol. 33, no. 5, pp. 569–589.

    Article  Google Scholar 

  • Engdahl, N.B., Vogler, E.T., and Weissmann, G.S., Evaluation of Aquifer Heterogeneity Effects on River Flow Loss Using a Transition Probability Framework, Water Resour. Res., 2010, vol. 46, p. 13.

    Google Scholar 

  • Falivene, O., Cabrera, L., Munoz, J.A., et al., Statistical Grid-Based Facies Reconstruction and Modelling for Sedimentary Bodies. Alluvial-Palustrine and Turbiditic Examples, Geologica Acta, 2007, vol. 5, no. 3, pp. 199–230.

    Google Scholar 

  • Gol’bert, A.V., Osnovy regional’noi paleoklimatologii (Fundamentals of Regional Paleoclimatology), Moscow: Nedra, 1987.

    Google Scholar 

  • Koltermann, C.E. and Gorelick, S.M., Heterogeneity in Sedimentary Deposits. A Review of Structure-Imitating, Process-Imitating, and Descriptive Approaches, Water Resour. Res., 1996, vol. 32, no. 9, pp. 2617–2658.

    Article  Google Scholar 

  • Pinus, O.V. and Pairazyan, K.V., The Peculiarities of Geological Modeling of Productive Beds of Fluvial Origin, Geol. Nefti Gaza, 2008, no. 1, pp. 25–30.

  • Podobina, V.M., Foraminifery, biostratigrafiya verkhnego mela i paleogena Zapadnoi Sibiri (Foraminifera and Biostratigraphy of Upper Cretaceous and Paleogene in West Siberia), Tomsk: Tomskii gosudarstvennyi univ., 2009.

    Google Scholar 

  • Pozdniakov, S.P. and Tsang, S.F., A Semianalytical Approach To Spatial Averaging of Hydraulic Conductivity in Heterogeneous Aquifers, J. Hydrology, 1996, vol. 216, nos. 1–2, pp. 78–98.

    Google Scholar 

  • Pozdniakov, S.P., Bakshevskaya, V.A., Zubkov, A.A., Danilov, V.V., Rybalchenko, A.I., and Tsang, C.-F., Modeling of Waste Injection in Heterogeneous Sandy Clay Formation, in Underground Injection Science and Technology, Amsterdam: Elsevier, 2005, pp. 203–218.

    Chapter  Google Scholar 

  • Proce, C.J., Ritzi, R.W., Dominic, D.F., and Dai, Z., Modeling Multiscale Heterogeneity and Aquifer Interconnectivity, Ground Water, 2004, vol. 42, no. 5, pp. 658–670.

    Article  Google Scholar 

  • Ritzi, R.W., Dominic, D.F., Slesers, A.J., et al., Comparing Statistical Models of Physical Heterogeneity in Buried-Valley Aquifers, Water. Res. Res, 2000, vol. 35, no. 11, pp. 3179–3192.

    Article  Google Scholar 

  • Rybal’chenko, A.I., Pimenov, M.K., Kostin, P.P., et al., Glubinnoe zakhoronenie zhidkikh i radioaktivnykh otkhodov (Deep Burial of Liquid and Radioactive Waste), Moscow: IzdAT, 1994.

    Google Scholar 

  • Sivakumar, B., Harter, T., and Zhang, H., A Fractal Investigation of Solute Travel Time in a Heterogeneous Aquifer: Transition Probability: Markov Chain Representation, Ecol. Modell., 2005, vol. 182, nos. 3–4, pp. 355–370.

    Article  Google Scholar 

  • Sun, A.Y., Ritzi, R.W., and Sims, D.W., Characterization and Modeling of Spatial Variability in a Complex Alluvial Aquifer: Implications on Solute Transport, Water. Resour. Res., 2008, vol. 44, p. 16.

    Google Scholar 

  • Weissmann, G.S. and Fogg, G.E., Multi-Scale Alluvial Fan Heterogeneity Modeled with Transition Probability Geostatistics in a Sequence Stratigraphic Framework, J. Hydrology, 1999, vol. 226, pp. 48–65.

    Article  Google Scholar 

  • Weissmann, G.S., Carle, S.F., and Fogg, G.E., Three-Dimensional Hydrofacies Modeling Based on Soil Surveys and Transition Probability Geostatistics, Water Resour. Res., 1999, vol. 35, no. 6, pp. 1761–1770.

    Article  Google Scholar 

  • Yong, Z. and Fogg, G.E., Simulation of Multi-Scale Heterogeneity of Porous Media and Parameter Sensitivity Analysis, Sci. China, Ser. E: Technol. Sci., 2003, vol. 46, no. 5, pp. 459–476.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Pozdniakov.

Additional information

Original Russian Text © S.P. Pozdniakov, V.A. Bakshevskaya, I.V. Krohicheva, V.V. Danilov, A.A. Zubkov, 2012, published in Vestnik Moskovskogo Universiteta. Geologiya, 2012, No. 1, pp. 40–48.

About this article

Cite this article

Pozdniakov, S.P., Bakshevskaya, V.A., Krohicheva, I.V. et al. The influence of conceptual model of sedimentary formation hydraulic heterogeneity on contaminant transport simulation. Moscow Univ. Geol. Bull. 67, 43–51 (2012). https://doi.org/10.3103/S0145875212010097

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0145875212010097

Keywords

Navigation